Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1974 Sep;54(3):753–762. doi: 10.1172/JCI107813

Cellular Action of Antidiuretic Hormone in Mice with Inherited Vasopressin-Resistant Urinary Concentrating Defects

Thomas P Dousa 1,2,3, Heinz Valtin 1,2,3
PMCID: PMC301609  PMID: 4368480

Abstract

Previous work has suggested that resistance to vasopressin in two strains of mice with nephrogenic deficiency of urinary concentration may entail a defect in the action of vasopressin at the cellular level. Several components involved in this action were therefore examined in vitro in renal medullary tissues from control mice (genotype VII +/+) and two genotypes with mild diabetes insipidus (DI +/+ nonsevere) and marked (DI +/+ severe) vasopressin-resistant concentrating defects. No significant differences were found in the affinity of adenylate cyclase for [8-arginine]-vasopressin (AVP), tested over a range of hormone concentration from 10-10 to 10-5 M. However, maximal stimulation of adenylate cyclase by saturating concentrations of AVP (intrinsic activity) was markedly decreased from control values in DI +/+ severe mice, and decreased to a lesser extent in DI +/+ nonsevere animals. A significant correlation was found between the activity of adenylate cyclase maximally stimulated by AVP in a given genotype, and the urine osmolality in the same animals. There were no significant differences in maximal stimulation of renal medullary adenylate cyclase in control experiments: not when stimulated nonspecifically by sodium fluoride, nor when stimulated by AVP in tissues from rats with induced water diuresis as compared to antidiuretic rats. Nor were there significant differences between VII +/+ and DI +/+ severe mice in the activity of renal cortical adenylate cyclase, either basal or when stimulated by parathyroid hormone. Furthermore, the abnormal genotypes did not differ significantly from control mice in the renal medullary activities of cyclic AMP phosphodiesterase or cyclic AMP-dependent protein kinase, nor in the content of microtubular subunits (assessed as colchicinebinding protein). The results are compatible with the view that impaired stimulation of renal medullary adenylate cyclase by vasopressin might be the sole or contributing cause of the vasopressin-resistant concentrating defect in the diseased mice; however, a causal relationship has not yet been proved.

Full text

PDF
753

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDRIOLE V. T., EPSTEIN F. H. PREVENTION OF PYELONEPHRITIS BY WATER DIURESIS: EVIDENCE FOR THE ROLE OF MEDULLARY HYPERTONICITY IN PROMOTING RENAL INFECTION. J Clin Invest. 1965 Jan;44:73–79. doi: 10.1172/JCI105128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adelman M. R., Borisy G. G., Shelanski M. L., Weisenberg R. C., Taylor E. W. Cytoplasmic filaments and tubules. Fed Proc. 1968 Sep-Oct;27(5):1186–1193. [PubMed] [Google Scholar]
  3. Beck N. P., Kaneko T., Zor U., Field J. B., Davis B. B. Effects of vasopressin and prostaglandin E 1 on the adenyl cyclase-cyclic 3',5'-adenosine monophosphate system of the renal medulla of the rat. J Clin Invest. 1971 Dec;50(12):2461–2465. doi: 10.1172/JCI106746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bockaert J., Roy C., Jard S. Oxytocin-sensitive adenylate cyclase in frog bladder epithelial cells. Role of calcium, nucleotides, and other factors in hormonal stimulation. J Biol Chem. 1972 Nov 10;247(21):7073–7081. [PubMed] [Google Scholar]
  5. Bockaert J., Roy C., Rajerison R., Jard S. Specific binding of (3H) lysine-vasopressin to pig kidney plasma membranes. Relationship of receptor occupancy to adenylate cyclase activation. J Biol Chem. 1973 Sep 10;248(17):5922–5931. [PubMed] [Google Scholar]
  6. Borisy G. G., Taylor E. W. The mechanism of action of colchicine. Binding of colchincine-3H to cellular protein. J Cell Biol. 1967 Aug;34(2):525–533. doi: 10.1083/jcb.34.2.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bär H. P., Hechter O. Adenyl cyclase assay in fat cell ghosts. Anal Biochem. 1969 Jun;29(3):476–489. doi: 10.1016/0003-2697(69)90332-7. [DOI] [PubMed] [Google Scholar]
  8. Chase L. R., Aurbach G. D. Renal adenyl cyclase: anatomically separate sites for parathyroid hormone and vasopressin. Science. 1968 Feb 2;159(3814):545–547. doi: 10.1126/science.159.3814.545. [DOI] [PubMed] [Google Scholar]
  9. Dousa T. P. Effect of renal medullary solutes on vasopressin-sensitive adenyl cyclase. Am J Physiol. 1972 Mar;222(3):657–662. doi: 10.1152/ajplegacy.1972.222.3.657. [DOI] [PubMed] [Google Scholar]
  10. Dousa T. P. Role of cyclic AMP in the action of antidiuretic hormone on kidney. Life Sci. 1973 Oct 16;13(8):1033–1040. doi: 10.1016/0024-3205(73)90371-8. [DOI] [PubMed] [Google Scholar]
  11. Dousa T. P., Rowland R. G., Carone F. A. Renal medullary adenylate cyclase in drug-induced nephrogenic diabetes insipidus. Proc Soc Exp Biol Med. 1973 Feb;142(2):720–722. doi: 10.3181/00379727-142-37101. [DOI] [PubMed] [Google Scholar]
  12. Dousa T. P., Sands H., Hechter O. Cyclic AMP-dependent reversible phosphorylation of renal medullary plasma membrane protein. Endocrinology. 1972 Sep;91(3):757–763. doi: 10.1210/endo-91-3-757. [DOI] [PubMed] [Google Scholar]
  13. Dousa T. P., Walter R., Schwartz I. L., Sands H., Hechter O. Role of cyclic AMP in the action of neurohypophyseal hormones on kidney. Adv Cyclic Nucleotide Res. 1972;1:121–135. [PubMed] [Google Scholar]
  14. Dousa T. P., Wilson D. M. Effects of demethylchlortetracycline on cellular action of antidiuretic hormone in vitro. Kidney Int. 1974 Apr;5(4):279–284. doi: 10.1038/ki.1974.37. [DOI] [PubMed] [Google Scholar]
  15. Dousa T., Hechter O., Schwartz I. L., Walter R. Neurohypophyseal hormone-responsive adenylate cyclase from mammalian kidney. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1693–1697. doi: 10.1073/pnas.68.8.1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dousa T., Hechter O. The effect of NaCl and LiCl on vasopressin-sensitive adenyl cyclase. Life Sci I. 1970 Jul 1;9(13):765–770. doi: 10.1016/0024-3205(70)90286-9. [DOI] [PubMed] [Google Scholar]
  17. Dousa T., Hechter O., Walter R., Schwartz I. L. [8-Arginine]-vasopressinoic acid: an inhibitor of rabbit kidney adenyl cyclase. Science. 1970 Feb 20;167(3921):1134–1135. doi: 10.1126/science.167.3921.1134. [DOI] [PubMed] [Google Scholar]
  18. Finn A. L., Handler J. S., Orloff J. Relation between toad bladder potassium content and permeability response to vasopressin. Am J Physiol. 1966 Jun;210(6):1279–1284. doi: 10.1152/ajplegacy.1966.210.6.1279. [DOI] [PubMed] [Google Scholar]
  19. Geisler A., Wraae O., Olesen O. V. Adenyl cyclase activity in kidneys of rats with lithium-induced polyuria. Acta Pharmacol Toxicol (Copenh) 1972;31(3):203–208. doi: 10.1111/j.1600-0773.1972.tb00714.x. [DOI] [PubMed] [Google Scholar]
  20. Grantham J. J., Burg M. B. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am J Physiol. 1966 Jul;211(1):255–259. doi: 10.1152/ajplegacy.1966.211.1.255. [DOI] [PubMed] [Google Scholar]
  21. Grantham J. J., Orloff J. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3',5'-monophosphate, and theophylline. J Clin Invest. 1968 May;47(5):1154–1161. doi: 10.1172/JCI105804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Grantham J. J. Vasopressin: effect on deformability of urinary surface of collecting duct cells. Science. 1970 May 29;168(3935):1093–1095. doi: 10.1126/science.168.3935.1093. [DOI] [PubMed] [Google Scholar]
  23. Jacob H. S., Ruby A., Overland E. S., Mazia D. Abnormal membrane protein of red blood cells in hereditary spherocytosis. J Clin Invest. 1971 Sep;50(9):1800–1805. doi: 10.1172/JCI106670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jacob H., Amsden T., White J. Membrane microfilaments of erythrocytes: alteration in intact cells reproduces the hereditary spherocytosis syndrome (vinblastine-colchicine-strychnine-electron microscopy-cell rigidity). Proc Natl Acad Sci U S A. 1972 Feb;69(2):471–474. doi: 10.1073/pnas.69.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kettyle W. M., Valtin H. Chemical and dimensional chracterization of the renal countercurrent system in mice. Kidney Int. 1972 Mar;1(3):135–144. doi: 10.1038/ki.1972.21. [DOI] [PubMed] [Google Scholar]
  26. Kuo J. F., Krueger B. K., Sanes J. R., Greengard P. Cyclic nucleotide-dependent protein kinases. V. Preparation and properties of adenosine 3',5'-monophosphate-dependent protein kinase from various bovine tissues. Biochim Biophys Acta. 1970 Jul 15;212(1):79–91. doi: 10.1016/0005-2744(70)90180-4. [DOI] [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. Marumo F., Edelman I. S. Effects of Ca++ and prostaglandin E1 on vasopressin activation of renal adenyl cyclase. J Clin Invest. 1971 Aug;50(8):1613–1620. doi: 10.1172/JCI106649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Melson G. L., Chase L. R., Aurbach G. D. Parathyroid hormone-sensitive adenyl cyclase in isolated renal tubules. Endocrinology. 1970 Mar;86(3):511–518. doi: 10.1210/endo-86-3-511. [DOI] [PubMed] [Google Scholar]
  30. Naik D. V., Valtin H. Hereditary vasopressin-resistant urinary concentrating defects in mice. Am J Physiol. 1969 Oct;217(4):1183–1190. doi: 10.1152/ajplegacy.1969.217.4.1183. [DOI] [PubMed] [Google Scholar]
  31. Orloff J., Handler J. The role of adenosine 3',5'-phosphate in the action of antidiuretic hormone. Am J Med. 1967 May;42(5):757–768. doi: 10.1016/0002-9343(67)90093-9. [DOI] [PubMed] [Google Scholar]
  32. Osawa M., Endo H. Level of newly synthesized cyclic AMP in the isolated rat kidney cells and its changes by vasopressin. Endocrinol Jpn. 1972 Jun;19(3):251–257. doi: 10.1507/endocrj1954.19.251. [DOI] [PubMed] [Google Scholar]
  33. Pawlson L. G., Taylor A., Mintz D. H., Field J. B., Davis B. B. Effect of vasopressin on renal cyclic AMP generation in potassium deficiency and patients with sickle hemoglobin. Metabolism. 1970 Sep;19(9):694–700. doi: 10.1016/0026-0495(70)90066-1. [DOI] [PubMed] [Google Scholar]
  34. Schultz G., Jakobs K. H., Böhme E., Schultz K. Einfluss verschiedener Hormone auf die Bildung von Adenosin-3':5'-monophosphat und Guanosin-3':5'-monophosphat durch partikuläre Präparationen aus der Rattenniere. Eur J Biochem. 1972 Jan 21;24(3):520–529. doi: 10.1111/j.1432-1033.1972.tb19714.x. [DOI] [PubMed] [Google Scholar]
  35. Senft G., Hoffmann M., Munske K., Schultz G. Effects of hydration and dehydration on cyclic adenosine 3',5'-monophosphate concentration in the rat kidney. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;298(4):348–358. doi: 10.1007/BF00363874. [DOI] [PubMed] [Google Scholar]
  36. Stewart J. Renal concentrating ability in mice: a model for the use of genetic variation in elucidating relationships between structure. Pflugers Arch. 1971;327(1):1–15. doi: 10.1007/BF00634095. [DOI] [PubMed] [Google Scholar]
  37. Stewart J., Valtin H. Computer simulation of osmotic gradient without active transport in renal inner medulla. Kidney Int. 1972 Nov;2(5):264–270. doi: 10.1038/ki.1972.105. [DOI] [PubMed] [Google Scholar]
  38. Taylor A., Mamelak M., Reaven E., Maffly R. Vasopressin: possible role of microtubules and microfilaments in its action. Science. 1973 Jul 27;181(4097):347–350. doi: 10.1126/science.181.4097.347. [DOI] [PubMed] [Google Scholar]
  39. Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]
  40. Valtin H. Hereditary hypothalamic diabetes insipidus in rats (Brattleboro strain). A useful experimental model. Am J Med. 1967 May;42(5):814–827. doi: 10.1016/0002-9343(67)90098-8. [DOI] [PubMed] [Google Scholar]
  41. Weisenberg R. C., Borisy G. G., Taylor E. W. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry. 1968 Dec;7(12):4466–4479. doi: 10.1021/bi00852a043. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES