Abstract
The effects of variation in dietary protein content on small intestinal brush border and cytosol peptide hydrolase activities have been investigated. One group of rats was fed a high protein diet (55% casein) and another group was fed a low protein diet (10% casein). After 1 wk, brush border peptide hydrolase activity (L-leucyl-β-naphthylamide as substrate) and cytosol peptide hydrolase activity (L-prolyl-L-leucine as substrate) were determined in mucosae taken from the proximal, middle, and distal small intestine. As judged by several parameters, brush border peptide hydrolase activity was significantly greater in rats fed the high protein diet when data for corresponding segments were compared. In contrast, no significant difference was seen in cytosol peptide hydrolase activity.
In a second study, brush border and cytosol peptide hydrolase activities were determined in the proximal intestine by utilizing an additional three peptide substrates: L-leucyl-L-alanine, L-phenylalanylglycine, and glycyl-L-phenylalanine. Sucrase, maltase, and alkaline phosphatase activities were also determined. As before, brush border peptide hydrolase activities were significantly greater in rats fed the high protein diet. However, activities of the nonproteolytic brush border enzymes did not vary significantly with diet. In contrast to the results obtained with L-prolyl-L-leucine as substrate for the cytosol enzymes, cytosol activity against the three additional peptide substrates was greater in rats fed the high protein diet.
It is suggested that the brush border peptide hydrolase response to variation in dietary protein content represents a functional adaptation analogous to the regulation of intestinal disaccharidases by dietary carbohydrates.
The implication of the differential responses of the cytosol peptide hydrolases is uncertain, since little is known of the functional role of these nonorgan-specific enzymes.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adibi S. A. Intestinal transport of dipeptides in man: relative importance of hydrolysis and intact absorption. J Clin Invest. 1971 Nov;50(11):2266–2275. doi: 10.1172/JCI106724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Asatoor A. M., Cheng B., Edwards K. D., Lant A. F., Matthews D. M., Milne M. D., Navab F., Richards A. J. Intestinal absorption of two dipeptides in Hartnup disease. Gut. 1970 May;11(5):380–387. doi: 10.1136/gut.11.5.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Auricchio S., Pierro M., Orsatti M. Assay of peptidase activities of intestinal brush border membrane with L-amino acid oxidase. Anal Biochem. 1971 Jan;39(1):15–23. doi: 10.1016/0003-2697(71)90456-8. [DOI] [PubMed] [Google Scholar]
- BLAIR D. G., YAKIMETS W., TUBA J. Rat intestinal sucrase. II. The effects of rat age and sex and of diet on sucrase activity. Can J Biochem Physiol. 1963 Apr;41:917–929. [PubMed] [Google Scholar]
- Burston D., Addison J. M., Matthews D. M. Uptake of dipeptides containing basic and acidic amino acids by rat small intestine in vitro. Clin Sci. 1972 Dec;43(6):823–837. doi: 10.1042/cs0430823. [DOI] [PubMed] [Google Scholar]
- Cheng B., Navab F., Lis M. T., Miller T. N., Matthews D. M. Mechanisms of dipeptide uptake by rat small intestine in vitro. Clin Sci. 1971 Mar;40(3):247–259. doi: 10.1042/cs0400247. [DOI] [PubMed] [Google Scholar]
- Dahlqvist A. Assay of intestinal disaccharidases. Anal Biochem. 1968 Jan;22(1):99–107. doi: 10.1016/0003-2697(68)90263-7. [DOI] [PubMed] [Google Scholar]
- Deren J. J., Broitman S. A., Zamcheck N. Effect of diet upon intestinal disaccharidases and disaccharide absorption. J Clin Invest. 1967 Feb;46(2):186–195. doi: 10.1172/JCI105521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fottrell P. F., Keane R., Harley J. Comparison of peptide hydrolases from brush border and cytosol fractions of rat and guinea-pig intestinal mucosa. Comp Biochem Physiol B. 1972 Sep 15;43(1):129–135. doi: 10.1016/0305-0491(72)90209-x. [DOI] [PubMed] [Google Scholar]
- Fujita M., Parsons D. S., Wojnarowska F. Oligopeptidases of brush border membranes of rat small intestinal mucosal cells. J Physiol. 1972 Dec;227(2):377–394. doi: 10.1113/jphysiol.1972.sp010038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GAREN A., LEVINTHAL C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta. 1960 Mar 11;38:470–483. doi: 10.1016/0006-3002(60)91282-8. [DOI] [PubMed] [Google Scholar]
- Gray G. M., Cooper H. L. Protein digestion and absorption. Gastroenterology. 1971 Oct;61(4):535–544. [PubMed] [Google Scholar]
- HEGSTED D. M., CHANG Y. O. PROTEIN UTILIZATION IN GROWING RATS. I. RELATIVE GROWTH INDEX AS A BIOASSAY PROCEDURE. J Nutr. 1965 Feb;85:159–168. doi: 10.1093/jn/85.2.159. [DOI] [PubMed] [Google Scholar]
- HOLT J. H., MILLER D. The localization of phosphomonoesterase and aminopeptidase in brush borders isolated from intestinal epithelial cells. Biochim Biophys Acta. 1962 Apr 9;58:239–243. doi: 10.1016/0006-3002(62)91004-1. [DOI] [PubMed] [Google Scholar]
- Heizer W. D., Kerley R. L., Isselbacher K. J. Intestinal peptide hydrolases differences between brush border and cytoplasmic enzymes. Biochim Biophys Acta. 1972 May 16;264(3):450–461. doi: 10.1016/0304-4165(72)90008-6. [DOI] [PubMed] [Google Scholar]
- Heizer W. D., Laster L. Peptide hydrolase activities of the mucosa of human small intestine. J Clin Invest. 1969 Jan;48(1):210–228. doi: 10.1172/JCI105970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hübscher G., West G. R., Brindley D. N. Studies on the fractionation of mucosal homogenates from the small intestine. Biochem J. 1965 Dec;97(3):629–642. doi: 10.1042/bj0970629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Josefsson L., Lindberg T. Intestinal dipeptidases. 3. Characterization and determination of dipeptidase activity in adult rat intestinal mucosa. Acta Physiol Scand. 1966 Apr;66(4):410–418. doi: 10.1111/j.1748-1716.1966.tb03218.x. [DOI] [PubMed] [Google Scholar]
- KISSANE J. M., ROBINS E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J Biol Chem. 1958 Jul;233(1):184–188. [PubMed] [Google Scholar]
- Kim Y. S., Birtwhistle W., Kim Y. W. Peptide hydrolases in the bruch border and soluble fractions of small intestinal mucosa of rat and man. J Clin Invest. 1972 Jun;51(6):1419–1430. doi: 10.1172/JCI106938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim Y. S., McCarthy D. M., Lane W., Fong W. Alterations in the levels of peptide hydrolases and other enzymes in brush-border and soluble fractions of rat small intestinal mucosa during starvation and refeeding. Biochim Biophys Acta. 1973 Sep 15;321(1):262–273. doi: 10.1016/0005-2744(73)90081-8. [DOI] [PubMed] [Google Scholar]
- Kumar V., Chase H. P. Progressive protein undernutrition and intestinal enzyme activities in monkeys. Am J Clin Nutr. 1972 May;25(5):485–489. doi: 10.1093/ajcn/25.5.485. [DOI] [PubMed] [Google Scholar]
- Kumar V., Chase H. P. Undernutrition and intestinal dipeptide hydrolase activity in the rat. J Nutr. 1971 Nov;101(11):1509–1514. doi: 10.1093/jn/101.11.1509. [DOI] [PubMed] [Google Scholar]
- LEVIN R. J., NEWEY H., SMYTH D. H. THE EFFECTS OF ADRENALECTOMY AND FASTING ON INTESTINAL FUNCTION IN THE RAT. J Physiol. 1965 Mar;177:58–73. doi: 10.1113/jphysiol.1965.sp007575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- McCarthy D. M., Kim Y. S. Changes in sucrase, enterokinase, and peptide hydrolase after intestinal resection. The association of cellular hyperplasia and adaptation. J Clin Invest. 1973 Apr;52(4):942–951. doi: 10.1172/JCI107259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panveliwalla D. K., Moss D. W. A comparison of aminoacyl-beta-naphthylamide hydrolases in extracts of human tissues. Biochem J. 1966 May;99(2):501–506. doi: 10.1042/bj0990501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters T. J., MacMahon M. T. The absorption of glycine and glycine oligopeptides by the rat. Clin Sci. 1970 Dec;39(6):811–821. doi: 10.1042/cs0390811. [DOI] [PubMed] [Google Scholar]
- ROBINSON G. B., SHAW B. The hydrolysis of dipeptides by different regions of rat small intestine. Biochem J. 1960 Nov;77:351–356. doi: 10.1042/bj0770351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosensweig N. S., Herman R. H. Control of jejunal sucrase and maltase activity by dietary sucrose or fructose in man. A model for the study of enzyme regulation in man. J Clin Invest. 1968 Oct;47(10):2253–2262. doi: 10.1172/JCI105910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schimke R. T., Doyle D. Control of enzyme levels in animal tissues. Annu Rev Biochem. 1970;39:929–976. doi: 10.1146/annurev.bi.39.070170.004433. [DOI] [PubMed] [Google Scholar]
- Silk D. B., Perrett D., Clark M. L. Intestinal transport of two dipeptides containing the same two neutral amino acids in man. Clin Sci Mol Med. 1973 Sep;45(3):291–299. doi: 10.1042/cs0450291. [DOI] [PubMed] [Google Scholar]
- Singh A., Balint J. A., Edmonds R. H., Rodgers J. B. Adaptive changes of the rat small intestine in response to a high fat diet. Biochim Biophys Acta. 1972 Apr 18;260(4):708–715. doi: 10.1016/0005-2760(72)90019-7. [DOI] [PubMed] [Google Scholar]
- Solimano G., Burgess E. A., Levin B. Protein-calorie malnutrition: effect of deficient diets on enzyme levels of jejunal mucosa of rats. Br J Nutr. 1967;21(1):55–68. doi: 10.1079/bjn19670009. [DOI] [PubMed] [Google Scholar]
- Stifel F. B., Rosenweig N. S., Zakim D., Herman R. H. Dietary regulation of glycolytic enzymes. I. Adaptive changes in rat jejunum. Biochim Biophys Acta. 1968 Dec 23;170(2):221–227. doi: 10.1016/0304-4165(68)90001-9. [DOI] [PubMed] [Google Scholar]
