Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1974 Dec;54(6):1301–1311. doi: 10.1172/JCI107876

Bile Acid Kinetics in Relation to Sex, Serum Lipids, Body Weights, and Gallbladder Disease in Patients with Various Types of Hyperlipoproteinemia

Kurt Einarsson 1, Kjell Hellström 1, Mora Kallner 1
PMCID: PMC301684  PMID: 4373491

Abstract

Bile acid kinetics were determined in 15 normolipidemic and 61 hyperlipidemic subjects with the aid of [14C]cholic acid and [3H]chenodeoxycholic acid. The diet was standardized and of natural type. The total bile acid formation was within normal limits in patients with hyperlipoproteinemia types IIa and IIb. On the average the production of cholic acid (C) represented less than 50% of the total bile acid synthesis in both groups. The corresponding value recorded for the controls was 64±2% (mean±SEM). The synthesis of C in hyperlipoproteinemia type IIa was significantly below normal. Of the 27 patients with the type IV pattern, 18 had a synthesis of C and C + chenodeoxycholic acid (CD) that exceeded the upper range recorded for the controls. In these subjects the C formation represented 73±3% of the total bile acid synthesis. Similar findings were also encountered in the five patients with the type V lipoprotein pattern studied. The bile acid pool size of the 11 patients with hyperlipoproteinemia type IV, who had been cholecystectomized or suffered from cholelithiasis, was 900 mg smaller on the average than that of the other subjects with the same type of hyperlipoproteinemia. However, the pool size in the former subjects still tended to be higher than that of the control subjects without evidence of gallbladder “disease”. In all groups of subjects the formation of bile acids tended to be higher in the male than in the female subjects. Bile acid synthesis showed no linear correlation to actual body weight, relative body weight, or body surface area. A moderate weight reduction in five patients (one with type IIb and four with type IV pattern) was followed by a 50% reduction of the C and CD synthesis.

Full text

PDF
1301

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almond H. R., Vlahcevic Z. R., Bell C. C., Jr, Gregory D. H., Swell L. Bile acid pools, kinetics and biliary lipid composition before and after cholecystectomy. N Engl J Med. 1973 Dec 6;289(23):1213–1216. doi: 10.1056/NEJM197312062892302. [DOI] [PubMed] [Google Scholar]
  2. BERGSTROM S., DANIELSSON H. On the regulation of bile acid formation in the rat liver. Acta Physiol Scand. 1958 Jul 17;43(1):1–7. doi: 10.1111/j.1748-1716.1958.tb01572.x. [DOI] [PubMed] [Google Scholar]
  3. Beaumont J. L., Carlson L. A., Cooper G. R., Fejfar Z., Fredrickson D. S., Strasser T. Classification of hyperlipidaemias and hyperlipoproteinaemias. Bull World Health Organ. 1970;43(6):891–915. [PMC free article] [PubMed] [Google Scholar]
  4. DANIELSSON H., ENEROTH P., HELLSTROM K., LINDSTEDT S., SJOVALL J. On the turnover and excretory products of cholic and chenodeoxycholic acid in man. J Biol Chem. 1963 Jul;238:2299–2304. [PubMed] [Google Scholar]
  5. Danielsson H. Influence of dietary bile acids on formation of bile acids in rat. Steroids. 1973 Nov;22(5):667–676. doi: 10.1016/0039-128x(73)90114-1. [DOI] [PubMed] [Google Scholar]
  6. Danzinger R. C., Hofmann A. F., Thistle J. L., Schoenfield L. J. Effect of oral chenodeoxycholic acid on bile acid kinetics and biliary lipid composition in women with cholelithiasis. J Clin Invest. 1973 Nov;52(11):2809–2821. doi: 10.1172/JCI107477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dowling R. H., Mack E., Small D. M. Effects of controlled interruption of the enterohepatic circulation of bile salts by biliary diversion and by ileal resection on bile salt secretion, synthesis, and pool size in the rhesus monkey. J Clin Invest. 1970 Feb;49(2):232–242. doi: 10.1172/JCI106232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. ENEROTH P., HELLSTROEM K., RYHAGE R. IDENTIFICATION AND QUANTIFICATION OF NEUTRAL FECAL STEROIDS BY GAS-LIQUID CHROMATOGRAPHY AND MASS SPECTROMETRY: STUDIES OF HUMAN EXCRETION DURING TWO DIETARY REGIMENS. J Lipid Res. 1964 Apr;5:245–262. [PubMed] [Google Scholar]
  9. Einarsson K., Hellström K., Kallner M. Feedback regulation of bile acid formation in man. Metabolism. 1973 Dec;22(12):1477–1483. doi: 10.1016/0026-0495(73)90015-2. [DOI] [PubMed] [Google Scholar]
  10. Einarsson K., Hellström K., Kallner M. The effect of clofibrate on the elimination of cholesterol as bile acids in patients with hyperlipoproteinaemia type II and IV. Eur J Clin Invest. 1973 Jul;3(4):345–351. doi: 10.1111/j.1365-2362.1973.tb00361.x. [DOI] [PubMed] [Google Scholar]
  11. Einarsson K., Hellström K. The formation of bile acids in patients with three types of hyperlipoproteinaemia. Eur J Clin Invest. 1972 Jun;2(4):225–230. doi: 10.1111/j.1365-2362.1972.tb00648.x. [DOI] [PubMed] [Google Scholar]
  12. Fredrickson D. S., Levy R. I., Lees R. S. Fat transport in lipoproteins--an integrated approach to mechanisms and disorders. N Engl J Med. 1967 Feb 2;276(5):273–concl. doi: 10.1056/NEJM196702022760507. [DOI] [PubMed] [Google Scholar]
  13. Grundy S. M., Ahrens E. H., Jr, Salen G., Schreibman P. H., Nestel P. J. Mechanisms of action of clofibrate on cholesterol metabolism in patients with hyperlipidemia. J Lipid Res. 1972 Jul;13(4):531–551. [PubMed] [Google Scholar]
  14. Grundy S. M. Treatment of hypercholesterolemia by interference with bile acid metabolism. Arch Intern Med. 1972 Oct;130(4):638–648. [PubMed] [Google Scholar]
  15. Havel R. J., Kane J. P., Balasse E. O., Segel N., Basso L. V. Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. J Clin Invest. 1970 Nov;49(11):2017–2035. doi: 10.1172/JCI106422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hellström K., Lindstedt S. Studies on the formation of cholic acid in subjects given standardized diet with butter or corn oil as dietary fat. Am J Clin Nutr. 1966 Jan;18(1):46–59. doi: 10.1093/ajcn/18.1.46. [DOI] [PubMed] [Google Scholar]
  17. IKKOS D., LUFT R. On the intravenous glucose tolerance test. Acta Endocrinol (Copenh) 1957 Jul;25(3):312–334. doi: 10.1530/acta.0.0250312. [DOI] [PubMed] [Google Scholar]
  18. Kottke B. A. Difference in bile acid excretion. Primary hypercholesteremia compared to combined hypercholesteremia and hypertriglyceridemia. Circulation. 1969 Jul;40(1):13–20. doi: 10.1161/01.cir.40.1.13. [DOI] [PubMed] [Google Scholar]
  19. LINDSTEDT S. The turnover of cholic acid in man: bile acids and steroids. Acta Physiol Scand. 1957 Sep 17;40(1):1–9. doi: 10.1111/j.1748-1716.1957.tb01473.x. [DOI] [PubMed] [Google Scholar]
  20. Langer T., Strober W., Levy R. I. The metabolism of low density lipoprotein in familial type II hyperlipoproteinemia. J Clin Invest. 1972 Jun;51(6):1528–1536. doi: 10.1172/JCI106949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laurell S. A method for routine determination of plasma triglycerides. Scand J Clin Lab Invest. 1966;18(6):668–672. doi: 10.3109/00365516609049052. [DOI] [PubMed] [Google Scholar]
  22. Levy R. I., Langer T. Hypolipidemic drugs and lipoprotein metabolism. Adv Exp Med Biol. 1972;26(0):155–163. doi: 10.1007/978-1-4684-7547-0_13. [DOI] [PubMed] [Google Scholar]
  23. Miettinen T. A. Cholesterol production in obesity. Circulation. 1971 Nov;44(5):842–850. doi: 10.1161/01.cir.44.5.842. [DOI] [PubMed] [Google Scholar]
  24. Myant N. B., Balasubramaniam S., Moutafis C. D., Mancini M., Slack J. Turnover of cholesteryl esters in plasma low-density and high-density lipoproteins in familial hyperbetalipoproteinaemia. Clin Sci Mol Med. 1973 Oct;45(4):551–560. doi: 10.1042/cs0450551. [DOI] [PubMed] [Google Scholar]
  25. Nestel P. J., Whyte H. M., Goodman D. S. Distribution and turnover of cholesterol in humans. J Clin Invest. 1969 Jun;48(6):982–991. doi: 10.1172/JCI106079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nikkilä E. A., Kekki M. Plasma endogenous triglyceride transport in hypertriglyceridaemia and effect of a hypolipidaemic drug (SU-13437). Eur J Clin Invest. 1972 Jun;2(4):231–238. doi: 10.1111/j.1365-2362.1972.tb00649.x. [DOI] [PubMed] [Google Scholar]
  27. Olefsky J., Reaven G. M., Farquhar J. W. Effects of weight reduction on obesity. Studies of lipid and carbohydrate metabolism in normal and hyperlipoproteinemic subjects. J Clin Invest. 1974 Jan;53(1):64–76. doi: 10.1172/JCI107560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Quarfordt S. H., Frank A., Shames D. M., Berman M., Steinberg D. Very low density lipoprotein triglyceride transport in type IV hyperlipoproteinemia and the effects of carbohydrate-rich diets. J Clin Invest. 1970 Dec;49(12):2281–2297. doi: 10.1172/JCI106448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Quarfordt S. H., Greenfield M. F. Estimation of cholesterol and bile acid turnover in man by kinetic analysis. J Clin Invest. 1973 Aug;52(8):1937–1945. doi: 10.1172/JCI107378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Reaven G. M., Hill D. B., Gross R. C., Farquhar J. W. Kinetics of triglyceride turnover of very low density lipoproteins of human plasma. J Clin Invest. 1965 Nov;44(11):1826–1833. doi: 10.1172/JCI105290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shefer S., Hauser S., Lapar V., Mosbach E. H. Regulatory effects of sterols and bile acids on hepatic 3-hydroxy-3-methylglutaryl CoA reductase and cholesterol 7alpha-hydroxylase in the rat. J Lipid Res. 1973 Sep;14(5):573–580. [PubMed] [Google Scholar]
  32. Sodhi H. S., Kudchodkar B. J. Catabolism of cholesterol in hypercholesterolemia and its relationship to plasma triglycerides. Clin Chim Acta. 1973 Jun 28;46(2):161–171. doi: 10.1016/0009-8981(73)90024-7. [DOI] [PubMed] [Google Scholar]
  33. Sodhi H. S., Kudchodkar B. J. Synthesis of cholesterol in hypercholesterolemia and its relationship to plasma trigylcerides. Metabolism. 1973 Jul;22(7):895–912. doi: 10.1016/0026-0495(73)90062-0. [DOI] [PubMed] [Google Scholar]
  34. Vlahcevic Z. R., Bell C. C., Jr, Gregory D. H., Buker G., Juttijudata P., Swell L. Relationship of bile acid pool size to the formation of lithogenic bile in female Indians of the southwest. Gastroenterology. 1972 Jan;62(1):73–83. [PubMed] [Google Scholar]
  35. Vlahcevic Z. R., Miller J. R., Farrar J. T., Swell L. Kinetics and pool size of primary bile acids in man. Gastroenterology. 1971 Jul;61(1):85–90. [PubMed] [Google Scholar]
  36. Wollenweber J., Stiehl A. Grösse des Pools und Turnover der primären Gallensäuren bei Hyperlipoproteinämien: Unterschiedliche Befunde bei Typ II und Typ IV Hyperlipoproteinämie. Klin Wochenschr. 1972 Jan 1;50(1):33–38. doi: 10.1007/BF01487773. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES