Abstract
We have studied insulin binding to circulating lymphocytes isolated from 20 untreated adult, nonobese, nonketotic, diabetic subjects with fasting hyperglycemia, 20 normal subjects, and four patients with fasting hyperglycemia secondary to chronic pancreatitis. The results of these studies show that lymphocytes from diabetic patients have decreased ability to specificity bind insulin when compared to lymphocytes from normal subjects. For example, when lymphocytes from diabetic patients and a trace amount of [125I]insulin (3.3 × 10-11 M) were incubated, binding was less than 50% of the value obtained with lymphocytes from normal subjects (2±0.2% vs. 4.2±0.4%). Furthermore, the data show that lymphocytes from diabetic patients have only 1,200 insulin receptor sites per cell compared to 2,200 sites per cell for lymphocytes from normal subjects. Competitive inhibition studies using unlabeled insulin indicate that the affinity for insulin of lymphocytes from both groups is comparable. Consequently the decreased insulin binding of diabetics' lymphocytes is primarily due to a decreased number of available receptors rather than decreased binding affinity. This decreased insulin binding is not due to chronic hyperglycemia since insulin binding to lymphocytes, obtained from four patients with fasting hyperglycemia secondary to chronic pancreatitis, was completely normal. The possibility that some factor present in the plasma of diabetic patients could cause decreased insulin binding also seems unlikely since we could demonstrate no in vitro effects of diabetics' plasma on insulin binding. Lastly, the proportion of lymphocytes which were thymus derived and bone marrow derived were the same in each of the study groups indicating that differences in lymphocyte subpopulations do not account for our results.
In conclusion: (a) lymphocytes from nonobese, untreated, adult diabetic patients with fasting hyperglycemia demonstrate a decreased ability to bind insulin; (b) this decreased insulin binding to lymphocytes obtained from diabetic patients can be accounted for primarily by an absolute decrease in the number of available receptor sites per cell; and (c) these data suggest that this defect in insulin binding is a primary phenomenon.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alford F. P., Martin F. I., Pearson M. J. The significance and interpretation of mildly abnormal oral glucose tolerance. Diabetologia. 1971 Jun;7(3):173–180. doi: 10.1007/BF01212550. [DOI] [PubMed] [Google Scholar]
- Archer J. A., Gorden P., Gavin J. R., 3rd, Lesniak M. A., Roth J. Insulin receptors in human circulating lymphocytes: application to the study of insulin resistance in man. J Clin Endocrinol Metab. 1973 Apr;36(4):627–633. doi: 10.1210/jcem-36-4-627. [DOI] [PubMed] [Google Scholar]
- BERSON S. A., YALOW R. S. Quantitative aspects of the reaction between insulin and insulin-binding antibody. J Clin Invest. 1959 Nov;38:1996–2016. doi: 10.1172/JCI103979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bobrove A. M., Strober S., Herzenberg L. A., DePamphilis J. D. Identification and quantitation of thymus-derived lymphocytes in human peripheral blood. J Immunol. 1974 Feb;112(2):520–527. [PubMed] [Google Scholar]
- Böyum A. A one-stage procedure for isolation of granulocytes and lymphocytes from human blood. General sedimentation properties of white blood cells in a 1g gravity field. Scand J Clin Lab Invest Suppl. 1968;97:51–76. [PubMed] [Google Scholar]
- Freychet P., Laudat M. H., Laudat P., Rosselin G., Kahn C. R., Gorden P., Roth J. Impairment of insulin binding to the fat cell plasma membrane in the obese hyperglycemic mouse. FEBS Lett. 1972 Sep 15;25(2):339–342. doi: 10.1016/0014-5793(72)80519-2. [DOI] [PubMed] [Google Scholar]
- Freychet P., Roth J., Neville D. M., Jr Monoiodoinsulin: demonstration of its biological activity and binding to fat cells and liver membranes. Biochem Biophys Res Commun. 1971 Apr 16;43(2):400–408. doi: 10.1016/0006-291x(71)90767-4. [DOI] [PubMed] [Google Scholar]
- Gavin J. R., 3rd, Gorden P., Roth J., Archer J. A., Buell D. N. Characteristics of the human lymphocyte insulin receptor. J Biol Chem. 1973 Mar 25;248(6):2202–2207. [PubMed] [Google Scholar]
- Gavin J. R., 3rd, Roth J., Neville D. M., Jr, de Meyts P., Buell D. N. Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc Natl Acad Sci U S A. 1974 Jan;71(1):84–88. doi: 10.1073/pnas.71.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
- Kahn C. R., Neville D. M., Jr, Roth J. Insulin-receptor interaction in the obese-hyperglycemic mouse. A model of insulin resistance. J Biol Chem. 1973 Jan 10;248(1):244–250. [PubMed] [Google Scholar]
- Olefsky J., Reaven G. M., Farquhar J. W. Effects of weight reduction on obesity. Studies of lipid and carbohydrate metabolism in normal and hyperlipoproteinemic subjects. J Clin Invest. 1974 Jan;53(1):64–76. doi: 10.1172/JCI107560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olefsky J., Reaven G. M. The human lymphocyte: a model for the study of insulin-receptor interaction. J Clin Endocrinol Metab. 1974 Apr;38(4):554–560. doi: 10.1210/jcem-38-4-554. [DOI] [PubMed] [Google Scholar]
- RABINOWITZ D., ZIERLER K. L. Forearm metabolism in obesity and its response to intra-arterial insulin. Characterization of insulin resistance and evidence for adaptive hyperinsulinism. J Clin Invest. 1962 Dec;41:2173–2181. doi: 10.1172/JCI104676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
- Reaven G., Miller R. Study of the relationship between glucose and insulin responses to an oral glucose load in man. Diabetes. 1968 Sep;17(9):560–569. doi: 10.2337/diab.17.9.560. [DOI] [PubMed] [Google Scholar]
- Robertson R. P., Porte D., Jr The glucose receptor. A defective mechanism in diabetes mellitus distinct from the beta adrenergic receptor. J Clin Invest. 1973 Apr;52(4):870–876. doi: 10.1172/JCI107251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth J. Peptide hormone binding to receptors: a review of direct studies in vitro. Metabolism. 1973 Aug;22(8):1059–1073. doi: 10.1016/0026-0495(73)90225-4. [DOI] [PubMed] [Google Scholar]

