Abstract
Cardiac stress produced by hypertension or excess volume loading results in different types of hypertrophy. Elevated left ventricular pressure rapidly results in increased myocardial protein synthesis in vivo and in vitro, but such rapid alterations are not consistently seen in volume loading. The difference in response is difficult to clarify since it is not possible to effect alterations in left ventricular pressure or perfusion without profoundly affecting coronary perfusion. The present study describes cardiac protein synthesis in the right ventricle of the young guinea pig heart in vitro by utilizing a perfusion model in which the right ventricle could be stressed by elevations of pressure or volume loading in the presence of constant and restricted coronary perfusion. With coronary flow maintained at 4 ml/min per heart equivalent to 25 ml/min/g dry wt, an increase in right ventricular pressure from normal levels of 3 mm Hg to 11 mm Hg resulted in a 60 percent increase of myocardial incorporation of (14C)lysine into protein. However, with further increases of right ventricular pressure to 22 mm Hg, protein synthesis dropped back to normal levels. The falloff in protein synthesis was not due to decreased contractility, alterations in intracellular lysine pool specific activity, or alterations in distribution of coronary flow. a 60 percent increase in coronary perfusion was again associated with a similar response of protein synthesis to progressive elevations of pressure despite a rise in the ATP levels and a fall in lactate production. Thus, a deficiency of O2 did not entirely explain the decline of protein synthesis with maximal pressures. At all levels of coronary perfusion, volume loading for 3 h did not result in increased protein incorporation of (14C)lysine. The studies support a relationship between ventricular pressure and protein synthesis unrelated to coronary flow per se. A pressure receptor triggering protein synthesis within the ventricular wall is postulated. Such a relationship is not apparent in short-term volume loading in vitro.
Full text
PDF![1](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0bb/301711/96b8a023a8e4/jcinvest00165-0009.png)
![2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0bb/301711/6cf178c42611/jcinvest00165-0010.png)
![3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0bb/301711/1b484e7ef422/jcinvest00165-0011.png)
![4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0bb/301711/3fa375f76e03/jcinvest00165-0012.png)
![5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0bb/301711/6aa4874dfdaa/jcinvest00165-0013.png)
![6](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0bb/301711/70170d436bf9/jcinvest00165-0014.png)
![7](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0bb/301711/c72c22ddc063/jcinvest00165-0015.png)
![8](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0bb/301711/52f415fa808f/jcinvest00165-0016.png)
![9](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0bb/301711/26122c818331/jcinvest00165-0017.png)
![10](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0bb/301711/bcc51d81187f/jcinvest00165-0018.png)
![11](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0bb/301711/ecc153da109f/jcinvest00165-0019.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRAUNWALD E., SARNOFF S. J., CASE R. B., STAINSBY W. N., WELCH G. H., Jr Hemodynamic determinants of coronary flow: effect of changes in aortic pressure and cardiac output on the relationship between myocardial oxygen consumption and coronary flow. Am J Physiol. 1958 Jan;192(1):157–163. doi: 10.1152/ajplegacy.1957.192.1.157. [DOI] [PubMed] [Google Scholar]
- Gan J. C., Jeffay H. Origins and metabolism of the intracellular amino acid pools in rat liver and muscle. Biochim Biophys Acta. 1967 Nov 28;148(2):448–459. doi: 10.1016/0304-4165(67)90141-9. [DOI] [PubMed] [Google Scholar]
- Grimm A. F., Kubota R., Whitehorn W. V. Ventricular nucleic acid and protein levels with myocardial growth and hypertrophy. Circ Res. 1966 Sep;19(3):552–558. doi: 10.1161/01.res.19.3.552. [DOI] [PubMed] [Google Scholar]
- Hatt P. Y., Berjal G., Moravec J., Swynghedauw B. Le myocarde ventriculaire dans l'insuffisance cardiaque expérimentale par insuffisance aortique chez le lapin. Etude au microscope électronique. Arch Mal Coeur Vaiss. 1970 Mar;63(3):383–407. [PubMed] [Google Scholar]
- Hearse D. J., Chain E. B. The role of glucose in the survival and 'recovery' of the anoxic isolated perfused rat heart. Biochem J. 1972 Aug;128(5):1125–1133. doi: 10.1042/bj1281125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hildebrand C. E., Pollard E. C. Hydrostatic pressure effects on protein synthesis. Biophys J. 1972 Oct;12(10):1235–1250. doi: 10.1016/S0006-3495(72)86159-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hjalmarson A., Isaksson O. In vitro work load and rat heart metabolism. I. Effect on protein synthesis. Acta Physiol Scand. 1972 Sep;86(1):126–144. doi: 10.1111/j.1748-1716.1972.tb00231.x. [DOI] [PubMed] [Google Scholar]
- Jefferson L. S., Wolpert E. B., Giger K. E., Morgan H. E. Regulation of protein synthesis in heart muscle. 3. Effect of anoxia on protein synthesis. J Biol Chem. 1971 Apr 10;246(7):2171–2178. [PubMed] [Google Scholar]
- Kako K., Minelli R. Regulation of leucine incorporation into cardiac protein by work loads. Experientia. 1969 Jan 15;25(1):34–36. doi: 10.1007/BF01903877. [DOI] [PubMed] [Google Scholar]
- MEERSON F. Z. Compensatory hyperfunction of the heart and cardiac insufficiency. Circ Res. 1962 Mar;10:250–258. doi: 10.1161/01.res.10.3.250. [DOI] [PubMed] [Google Scholar]
- McDonald T. F., Macleod D. P. Anoxic atrial and ventricular muscle electrical activity, cell potassium, and metabolism: a comparative study. J Mol Cell Cardiol. 1973 Apr;5(2):149–159. doi: 10.1016/0022-2828(73)90048-5. [DOI] [PubMed] [Google Scholar]
- Neely J. R., Rovetto M. J., Whitmer J. T., Morgan H. E. Effects of ischemia on function and metabolism of the isolated working rat heart. Am J Physiol. 1973 Sep;225(3):651–658. doi: 10.1152/ajplegacy.1973.225.3.651. [DOI] [PubMed] [Google Scholar]
- Opie L. H., Mansford K. R., Owen P. Effects of increased heart work on glycolysis and adenine nucleotides in the perfused heart of normal and diabetic rats. Biochem J. 1971 Sep;124(3):475–490. doi: 10.1042/bj1240475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson M. B., Lesch M. Protein synthesis and amino acid transport in the isolated rabbit right ventricular papillary muscle. Effect of isometric tension development. Circ Res. 1972 Sep;31(3):317–327. doi: 10.1161/01.res.31.3.317. [DOI] [PubMed] [Google Scholar]
- Rabinowitz M., Zak R. Biochemical and cellular changes in cardiac hypertrophy. Annu Rev Med. 1972;23:245–262. doi: 10.1146/annurev.me.23.020172.001333. [DOI] [PubMed] [Google Scholar]
- Righetti P., Little E. P., Wolf G. Reutilization of amino acids in protein synthesis in HeLa cells. J Biol Chem. 1971 Sep 25;246(18):5724–5732. [PubMed] [Google Scholar]
- Rothschild M. A., Oratz M., Evans C. D., Schreiber S. S. Role hepatic interstitial albumin in regulating albumin synthesis. Am J Physiol. 1966 Jan;210(1):57–68. doi: 10.1152/ajplegacy.1966.210.1.57. [DOI] [PubMed] [Google Scholar]
- SONNENBLICK E. H., SPIRO D., SPOTNITZ H. M. THE ULTRASTRUCTURAL BASIS OF STARLING'S LAW OF THE HEART. THE ROLE OF THE SARCOMERE IN DETERMINING VENTRICULAR SIZE AND STROKE VOLUME. Am Heart J. 1964 Sep;68:336–346. doi: 10.1016/0002-8703(64)90301-1. [DOI] [PubMed] [Google Scholar]
- Scheuer J. The effect of hypoxia on glycolytic ATP production. J Mol Cell Cardiol. 1972 Dec;4(6):689–692. doi: 10.1016/0022-2828(72)90122-8. [DOI] [PubMed] [Google Scholar]
- Schreiber S. S., Briden K., Oratz M., Rothschild M. A. Ethanol, acetaldehyde, and myocardial protein synthesis. J Clin Invest. 1972 Nov;51(11):2820–2826. doi: 10.1172/JCI107104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schreiber S. S., Oratz M., Evans C. D., Gueyikian I., Rothschild M. A. Myosin, myoglobin, and collagen synthesis in acute cardiac overload. Am J Physiol. 1970 Aug;219(2):481–486. doi: 10.1152/ajplegacy.1970.219.2.481. [DOI] [PubMed] [Google Scholar]
- Schreiber S. S., Oratz M., Evans C., Reff F., Klein I., Rothschild M. A. Cardiac protein degradation in acute overload in vitro: reutilization of amino acids. Am J Physiol. 1973 Feb;224(2):338–345. doi: 10.1152/ajplegacy.1973.224.2.338. [DOI] [PubMed] [Google Scholar]
- Schreiber S. S., Oratz M., Rothschild M. A. Protein synthesis in the overloaded mammalian heart. Am J Physiol. 1966 Aug;211(2):314–318. doi: 10.1152/ajplegacy.1966.211.2.314. [DOI] [PubMed] [Google Scholar]
- Schreiber S. S. The effects of overload on cardiac muscle protein synthesis leading ultimately to hypertrophy. How to approximate the "true" rates of protein synthesis in the face of lack of intracellular homogeneity. Mt Sinai J Med. 1973 May-Jun;40(3):482–490. [PubMed] [Google Scholar]
- Tomita K. Studies on myocardial protein metabolism in cardiac hypertrophy. Jpn Heart J. 1966 Nov;7(6):566–589. doi: 10.1536/ihj.7.566. [DOI] [PubMed] [Google Scholar]