Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1975 Jan;55(1):43–49. doi: 10.1172/JCI107916

Regional myocardial blood flow during graded treadmill exercise in the dog.

R M Ball, R J Bache, F R Cobb, J C Greenfield Jr
PMCID: PMC301715  PMID: 1109180

Abstract

Regional myocardial blood flow was measured in nine dogs at rest and during three levels of treadmill exercise by using left atrial injections of 7-10-mum radioactive microspheres. At rest, heart rate was 76 plus or minus 3 beats/min (mean plus or minus SEM), mean left ventricular myocardial flow was 0.94 plus or minus 0.09 ml/min/g and endocardial flow (endo) exceeded epicardial flow (epi) in all regions (endo/epi equals 1.12-1.33). When treadmill exercise was regulated to increase heart rates from 152 plus or minus 3 to 190 plus or minus 3 to 240 plus or minus 6 beats/min, myocardial blood flow (MBF) to all regions of the left ventricle increased linearly with heart rate (HR) from 1.83 plus or minus 0.11 to 2.75 plus or minus 0.22 to 3.90 plus or minus 0.26 ml/min/g (MBF EQUALs 0.0175 HR - 0.523 PLUS OR MINUS 0.614, R EQUALS 0.87). Exercise abolished the gradient of blood flow favoring the left ventricular endocardium at rest, so that the endo/epi flow ratios were not significantly different from 1.00. Right ventricular flows were consistently less than corresponding left ventricular flows, but showed a similar linear increase with heart rate. Right ventricular endo/epi ratios were not different from 1.00 either at rest or during exercise. Thus, exercise resulted in increased myocardial blood flow to all regions of the left and right ventricles with maintenance of subendocardial flow equal to subepicardial flow.

Full text

PDF
43

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker L. C., Fortuin N. J., Pitt B. Effect of ischemia and antianginal drugs on the distribution of radioactive microspheres in the canine left ventricle. Circ Res. 1971 Feb;28(2):263–269. doi: 10.1161/01.res.28.2.263. [DOI] [PubMed] [Google Scholar]
  2. Buckberg G. D., Fixler D. E., Archie J. P., Hoffman J. I. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res. 1972 Jan;30(1):67–81. doi: 10.1161/01.res.30.1.67. [DOI] [PubMed] [Google Scholar]
  3. Buckberg G. D., Luck J. C., Payne D. B., Hoffman J. I., Archie J. P., Fixler D. E. Some sources of error in measuring regional blood flow with radioactive microspheres. J Appl Physiol. 1971 Oct;31(4):598–604. doi: 10.1152/jappl.1971.31.4.598. [DOI] [PubMed] [Google Scholar]
  4. Cobb F. R., Bache R. J., Greenfield J. C., Jr Regional myocardial blood flow in awake dogs. J Clin Invest. 1974 Jun;53(6):1618–1625. doi: 10.1172/JCI107712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Downey J. M., Kirk E. S. Distribution of the coronary blood flow across the canine heart wall during systole. Circ Res. 1974 Feb;34(2):251–257. doi: 10.1161/01.res.34.2.251. [DOI] [PubMed] [Google Scholar]
  6. KIRK E. S., HONIG C. R. NONUNIFORM DISTRIBUTION OF BLOOD FLOW AND GRADIENTS OF OXYGEN TENSION WITHIN THE HEART. Am J Physiol. 1964 Sep;207:661–668. doi: 10.1152/ajplegacy.1964.207.3.661. [DOI] [PubMed] [Google Scholar]
  7. Khouri E. M., Gregg D. E., Rayford C. R. Effect of exercise on cardiac output, left coronary flow and myocardial metabolism in the unanesthetized dog. Circ Res. 1965 Nov;17(5):427–437. doi: 10.1161/01.res.17.5.427. [DOI] [PubMed] [Google Scholar]
  8. Kitamura K., Jorgensen C. R., Gobel F. L., Taylor H. L., Wang Y. Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J Appl Physiol. 1972 Apr;32(4):516–522. doi: 10.1152/jappl.1972.32.4.516. [DOI] [PubMed] [Google Scholar]
  9. MOIR T. W., DEBRA D. W. MEASUREMENT OF THE ENDOCARDIAL DISTRIBUTION OF LEFT VENTRICULAR CORONARY BLOOD FLOW BY RB-86 CHLORIDE. Am Heart J. 1965 Jun;69:795–800. doi: 10.1016/0002-8703(65)90453-9. [DOI] [PubMed] [Google Scholar]
  10. Moir T. W. Subendocardial distribution of coronary blood flow and the effect of antianginal drugs. Circ Res. 1972 Jun;30(6):621–627. doi: 10.1161/01.res.30.6.621. [DOI] [PubMed] [Google Scholar]
  11. Utley J., Carlson E. L., Hoffman J. I., Martinez H. M., Buckberg G. D. Total and regional myocardial blood flow measurements with 25 micron, 15 micron, 9 micron, and filtered 1-10 micron diameter microspheres and antipyrine in dogs and sheep. Circ Res. 1974 Mar;34(3):391–405. doi: 10.1161/01.res.34.3.391. [DOI] [PubMed] [Google Scholar]
  12. Vatner S. F., Higgins C. B., Franklin D., Braunwald E. Role of tachycardia in mediating the coronary hemodynamic response to severe exercise. J Appl Physiol. 1972 Mar;32(3):380–385. doi: 10.1152/jappl.1972.32.3.380. [DOI] [PubMed] [Google Scholar]
  13. Vatner S. F., Higgins C. B., White S., Patrick T., Franklin D. The peripheral vascular response to severe exercise in untethered dogs before and after complete heart block. J Clin Invest. 1971 Sep;50(9):1950–1960. doi: 10.1172/JCI106687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Winbury M. M. Redistribution of left ventricular blood flow produced by nitroglycerin. An example of integration of the macro- and microcirculation. Circ Res. 1971 Jan;28(Suppl):140–147. [PubMed] [Google Scholar]
  15. Yipintsoi T., Dobbs W. A., Jr, Scanlon P. D., Knopp T. J., Bassingthwaighte J. B. Regional distribution of diffusible tracers and carbonized microspheres in the left ventricle of isolated dog hearts. Circ Res. 1973 Nov;33(5):573–587. doi: 10.1161/01.res.33.5.573. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES