Abstract
The purpose of the present studies was to characterize the nature of salt and water transport out of the superficial (SF) and juxtamedullary (JM) straight segments of rabbit proximal tubules as examined by in vitro microperfusion techniques. When the perfusate consisted of a solution simulating ultrafiltrate of plasma, there were no differences between SF and JM straight tubules in either net reabsorption of fluid (SF=0.47 nl/mm per min; JM=0.56 nl/mm per min) or in transtubular potential difference (PD) (SF=-2.1 mV; JM=-1.8 mV). Removal of glucose and alanine from the perfusate had no effect on the magnitude of the PD in either straight segment. Ouabain decreased both the net reabsorptive rates and the PD. Isosmolal replacement of NaCL by Na-cyclamate (a presumed impermeant anion) in the perfusate and the bath caused an increase in luminal negativity in both segments wheras similar substitution of NaCL by choline-CL (nontransported cation) changed the PD TO NEAR ZERO. These studies, therefore, suggest that sodium is transported out of the proximal straight tubules by an active noncoupled process that generates a PD (electrogenic process). When the perfusate consisted of a solution with a high chloride concentration (resulting from greater HCO3 than CI reabsorption in the proximal convoluted tubule), different PDs in SF and JM tubules were generated: SF=+1.6 plus or minus 0.2 mV; JM=-1.3 plus or minus 0.3 mV. This difference in PD was attributed to relative differences in Na and CI permeabilities in these two segments. Electrophysiological and isotopic estimates of the chloride to sodium permeability revealed that the SF tubule is about twice as permeant to chloride than to sodium whereas the JM tubules are approximately twice as permeant to sodium than to chloride. It is concluded that the mechanism of active sodium transport in the straight segment of proximal tubule differs from that of the convoluted segment and that both the SF and JM straight segments differ from each other with respect os sodium and chloride permeability.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auld R. B., Alexander E. A., Levinsky N. G. Proximal tubular function in dogs with thoracic caval constriction. J Clin Invest. 1971 Oct;50(10):2150–2158. doi: 10.1172/JCI106709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barratt L. J., Rector F. C., Jr, Kokko J. P., Seldin D. W. Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney. J Clin Invest. 1974 Feb;53(2):454–464. doi: 10.1172/JCI107579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barratt L. J., Wallin J. D., Rector F. C., Jr, Seldin D. W. Influence of volume expansion on single-nephron filtration rate and plasma flow in the rat. Am J Physiol. 1973 Mar;224(3):643–650. doi: 10.1152/ajplegacy.1973.224.3.643. [DOI] [PubMed] [Google Scholar]
- Bartoli E., Earley L. E. The relative contributions of reabsorptive rate and redistributed nephron filtration rate to changes in proximal tubular fractional reabsorption during acute saline infusion and aortic constriction in the rat. J Clin Invest. 1971 Oct;50(10):2191–2203. doi: 10.1172/JCI106714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blantz R. C., Katz M. A., Rector F. C., Jr, Seldin D. W. Measurement of intrarenal blood flow. II. Effect of saline diuresis in the dog. Am J Physiol. 1971 Jun;220(6):1914–1920. doi: 10.1152/ajplegacy.1971.220.6.1914. [DOI] [PubMed] [Google Scholar]
- Bruns F. J., Alexander E. A., Riley A. L., Levinsky N. G. Superficial and juxtamedullary nephron function during saline loading in the dog. J Clin Invest. 1974 Apr;53(4):971–979. doi: 10.1172/JCI107663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burg M. B., Orloff J. Control of fluid absorption in the renal proximal tubule. J Clin Invest. 1968 Sep;47(9):2016–2024. doi: 10.1172/JCI105888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burg M. B. Perfusion of isolated renal tubules. Yale J Biol Med. 1972 Jun-Aug;45(3-4):321–326. [PMC free article] [PubMed] [Google Scholar]
- Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
- Carriere S., Boulet P., Mathieu A., Brunette M. G. Isotonic saline loading and intrarenal distribution of glomerular filtration in dogs. Kidney Int. 1972 Oct;2(4):191–196. doi: 10.1038/ki.1972.94. [DOI] [PubMed] [Google Scholar]
- Grantham J. J., Burg M. B. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am J Physiol. 1966 Jul;211(1):255–259. doi: 10.1152/ajplegacy.1966.211.1.255. [DOI] [PubMed] [Google Scholar]
- Grantham J. J., Irwin R. L., Qualizza P. B., Tucker D. R., Whittier F. C. Fluid secretion in isolated proximal straight renal tubules. Effect of human uremic serum. J Clin Invest. 1973 Oct;52(10):2441–2450. doi: 10.1172/JCI107435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrera-Acosta J., Andreucci V. E., Rector F. C., Jr, Seldin D. W. Effect of expansion of extracellular volume on single-nephron filtration rates in the rat. Am J Physiol. 1972 Apr;222(4):938–944. doi: 10.1152/ajplegacy.1972.222.4.938. [DOI] [PubMed] [Google Scholar]
- Horster M., Thurau K. Micropuncture studies on the filtration rate of single superficial and juxtamedullary glomeruli in the rat kidney. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;301(2):162–181. doi: 10.1007/BF00362733. [DOI] [PubMed] [Google Scholar]
- Imai M., Kokko J. P. Effect of peritubular protein concentration on reabsorption of sodium and water in isolated perfused proxmal tubules. J Clin Invest. 1972 Feb;51(2):314–325. doi: 10.1172/JCI106816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jamison R. L., Lacy F. B. Effect of saline infusion on superficial and juxtamedullary nephrons in the rat. Am J Physiol. 1971 Sep;221(3):690–697. doi: 10.1152/ajplegacy.1971.221.3.690. [DOI] [PubMed] [Google Scholar]
- Kokko J. P. Proximal tubule potential difference. Dependence on glucose on glucose, HCO 3 , and amino acids. J Clin Invest. 1973 Jun;52(6):1362–1367. doi: 10.1172/JCI107308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lutz M. D., Cardinal J., Burg M. B. Electrical resistance of renal proximal tubule perfused in vitro. Am J Physiol. 1973 Sep;225(3):729–734. doi: 10.1152/ajplegacy.1973.225.3.729. [DOI] [PubMed] [Google Scholar]
- Mandin H., Israelit A. H., Rector F. C., Jr, Seldin D. W. Effect of saline infusions on intrarenal distribution of glomerular filtrate and proximal reabsorption in the dog. J Clin Invest. 1971 Mar;50(3):514–522. doi: 10.1172/JCI106520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RECTOR F. C., Jr, CARTER N. W., SELDIN D. W. THE MECHANISM OF BICARBONATE REABSORPTION IN THE PROXIMAL AND DISTAL TUBULES OF THE KIDNEY. J Clin Invest. 1965 Feb;44:278–290. doi: 10.1172/JCI105142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider E. G., Lynch R. E., Willis L. R., Knox F. G. Single-nephron filtration rate in the dog. Am J Physiol. 1972 Mar;222(3):667–673. doi: 10.1152/ajplegacy.1972.222.3.667. [DOI] [PubMed] [Google Scholar]
- Stein J. H., Osgood R. W., Ferris T. F. Effect of volume expansion on distribution of glomerular filtrate and renal cortical blood flow in the dog. Am J Physiol. 1972 Oct;223(4):984–990. doi: 10.1152/ajplegacy.1972.223.4.984. [DOI] [PubMed] [Google Scholar]
- Wallin J. D., Rector F. C., Jr, Seldin D. W. Effect of volume expansion on intrarenal distribution of plasma flow in the dog. Am J Physiol. 1972 Jul;223(1):125–129. doi: 10.1152/ajplegacy.1972.223.1.125. [DOI] [PubMed] [Google Scholar]