Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1975 Nov;56(5):1293–1301. doi: 10.1172/JCI108205

Studies on N5-methyltetrahydrofolate-homocystein methyltransferase in normal and leukemia leukocytes.

R Peytremann, J Thorndike, W S Beck
PMCID: PMC301992  PMID: 1184750

Abstract

A cobalamin-dependent N5-methyltetra-hydrofolate-homocysteine methyltransferase (methyl-transferase) was demonstrated in unfractioned extracts of human normal and leukemia leukocytes. Activity was substantially reduced in the absence of an added cobalamin derivative. Presumably, this residual activity reflects the endogeneous level of holoenzyme. Enzyme activity was notably higher in lymphoid cells than in myeloid cells. Thus, mean specific activities (+/-SD) were: chronic lymphocytic leukemia lymphocytes, 2.15+/-1.16; normal lymphocytes, 0.91+/-0.59; normal mature granulocytes, 0.15+/-0.10; chronic myelocytic leukemia granulocytes, barely detectable activity. Properties of leukocytes enzymes resembled those of methyltransferases previously studied in bacteria and other animal cells. Granulocytes and chronic myelocytic leukemia cells contain a factor or factors that inhibits Escherichia coli enzyme. The data suggest that the prominence of this cobalamin-dependent enzyme in lymphocytes and other mononuclear cell types may be related to their potential for cell division.

Full text

PDF
1293

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashe H., Clark B. R., Chu F., Hardy D. N., Halpern B. C., Halpern R. M., Smith R. A. N5-methyltetrahydrofolate: homocysteine methyltransferase activity in extracts from normal, malignant and embryonic tissue culture cells. Biochem Biophys Res Commun. 1974 Mar 25;57(2):417–425. doi: 10.1016/0006-291x(74)90947-4. [DOI] [PubMed] [Google Scholar]
  2. BAKER H., HERBERT V., FRANK O., PASHER I., HUTNER S. H., WASSERMAN L. R., SOBOTKA H. A microbiologic method for detecting folic acid deficiency in man. Clin Chem. 1959 Aug;5(4):275–280. [PubMed] [Google Scholar]
  3. BECK W. S. The control of leukocyte glycolysis. J Biol Chem. 1958 May;232(1):251–270. [PubMed] [Google Scholar]
  4. BECK W. S., VALENTINE W. N. Biochemical studies on leucocytes. II. Phosphatase activity in chronic lymphatic leucemia, acute leucemia, and miscellaneous hematologic conditions. J Lab Clin Med. 1951 Aug;38(2):245–253. [PubMed] [Google Scholar]
  5. BERTINO J. R., SILBER R., FREEMAN M., ALENTY A., ALBRECHT M., GABRIO B. W., HUENNEKENS F. M. STUDIES ON NORMAL AND LEUKEMIC LEUKOCYTES. IV. TETRAHYDROFOLATE-DEPENDENT ENZYME SYSTEMS AND DIHYDROFOLIC REDUCTASE. J Clin Invest. 1963 Dec;42:1899–1907. doi: 10.1172/JCI104875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blair J. A., Saunders K. J. A convenient method for the preparation of dl-5-methyltetrahydrofolic acid (dl-5-methyl-5,6,7,8-tetrahydropteroyl-L-monoglutamic acid). Anal Biochem. 1970 Apr;34(2):376–381. doi: 10.1016/0003-2697(70)90122-3. [DOI] [PubMed] [Google Scholar]
  7. Bloos I., Sauer H. J. Nachweis und Aktivität der Methioninsynthetase in normalen und pathologischen Zellen des Blutes und des Knochenmarks. Klin Wochenschr. 1972 Nov 1;50(21):991–994. doi: 10.1007/BF01486993. [DOI] [PubMed] [Google Scholar]
  8. Coleman M. S., Hutton J. J., Bollum F. J. DNA polymerases in normal and leukemic human hematopoietic cells. Blood. 1974 Jul;44(1):19–32. [PubMed] [Google Scholar]
  9. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DICKERMAN H., REDFIELD B. G., BIERI J. G., WEISSBACH H. THE ROLE OF VITAMIN B12 IN METHIONINE BIOSYNTHESIS IN AVIAN LIVER. J Biol Chem. 1964 Aug;239:2545–2552. [PubMed] [Google Scholar]
  11. Das K. C., Hoffbrand A. V. Lymphocyte transformation in megaloblastic anaemia: morphology and DNA synthesis. Br J Haematol. 1970 Oct;19(4):459–468. doi: 10.1111/j.1365-2141.1970.tb06973.x. [DOI] [PubMed] [Google Scholar]
  12. Finkelstein J. D., Kyle W., Harris B. J. Methionine metabolism in mammals. Regulation of homocysteine methyltransferases in rat tissue. Arch Biochem Biophys. 1971 Sep;146(1):84–92. doi: 10.1016/s0003-9861(71)80044-9. [DOI] [PubMed] [Google Scholar]
  13. GUEST J. R., HELLEINER C. W., CROSS M. J., WOODS D. D. Cobalamin and the synthesis of methionine by ultrasonic extracts of Escherichia coli. Biochem J. 1960 Aug;76:396–405. doi: 10.1042/bj0760396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. GUEST J. R. Inhibition of methionine synthesis in Escherichia coli by analogues of cobalamin. Biochem J. 1960 Aug;76:405–412. doi: 10.1042/bj0760405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gaull G. E., Von Berg W., Räihä N. C., Sturman J. A. Development of methyltransferase activities of human fetal tissues. Pediatr Res. 1973 May;7(5):527–533. doi: 10.1203/00006450-197305000-00006. [DOI] [PubMed] [Google Scholar]
  16. Halpern B. C., Clark B. R., Hardy D. N., Halpern R. M., Smith R. A. The effect of replacement of methionine by homocystine on survival of malignant and normal adult mammalian cells in culture. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1133–1136. doi: 10.1073/pnas.71.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Handin R. I., Piessens W. F., Moloney W. C. Stimulation of nonimmunized lymphocytes by platelet-antibody complexes in idiopathic thrombocytopenic purpura. N Engl J Med. 1973 Oct 4;289(14):714–718. doi: 10.1056/NEJM197310042891403. [DOI] [PubMed] [Google Scholar]
  18. KIOSSOGLOU K. A., MITUS W. J., DAMESHEK W. CHROMOSOMAL ABERRATIONS IN PERNICIOUS ANEMIA. STUDY OF THREE CASES BEFORE AND AFTER THERAPY. Blood. 1965 May;25:662–682. [PubMed] [Google Scholar]
  19. Kaltreider H. B., Salmon S. E. Immunology of the lower respiratory tract. Functional properties of bronchoalveolar lymphocytes obtained from the normal canine lung. J Clin Invest. 1973 Sep;52(9):2211–2217. doi: 10.1172/JCI107406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kamely D., Littlefield J. W., Erbe R. W. Regulation of 5-methyltetrahydrofolate: homocysteine methyltransferase activity by methionine, vitamin B12, and folate in cultured baby hamster kidney cells. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2585–2589. doi: 10.1073/pnas.70.9.2585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kerwar S. S., Spears C., McAuslan B., Weissbach H. Studies on vitamin B12 metabolism in HeLa cells. Arch Biochem Biophys. 1971 Jan;142(1):231–237. doi: 10.1016/0003-9861(71)90279-7. [DOI] [PubMed] [Google Scholar]
  22. Kreis W., Hession C. Biological effects of enzymatic deprivation of L-methionine in cell culture and an experimental tumor. Cancer Res. 1973 Aug;33(8):1866–1869. [PubMed] [Google Scholar]
  23. LOUGHLIN R. E., ELFORD H. L., BUCHANAN J. M. ENZYMATIC SYNTHESIS OF THE METHYL GROUP OF METHIONINE. VII. ISOLATION OF A COBALAMIN-CONTAINING TRANSMETHYLASE (5-METHYLTETRAHYDRO-FOLATE-HOMOCYSTEINE) FROM MAMMALIAN LIVER. J Biol Chem. 1964 Sep;239:2888–2895. [PubMed] [Google Scholar]
  24. Lawler S. D., Roberts P. D., Hoffbrand A. V. Chromosome studies in megaloblastic anaemia before and after treatment. Scand J Haematol. 1971;8(4):309–320. doi: 10.1111/j.1600-0609.1971.tb00880.x. [DOI] [PubMed] [Google Scholar]
  25. MEYER L. M., CRONKITE E. P., MILLER I. F., MULZAC C. W., JONES I. Co60 vitamin B12 binding capacity of human leukocytes. Blood. 1962 Feb;19:229–235. [PubMed] [Google Scholar]
  26. Mangum J. H., Murray B. K., North J. A. Vitamin B 12 dependent methionine biosynthesis in cultured mammalian cells. Biochemistry. 1969 Sep;8(9):3496–3499. doi: 10.1021/bi00837a002. [DOI] [PubMed] [Google Scholar]
  27. Mangum J. H., North J. A. Isolation of a cobalamin containing 5-methyltetrahydrofolate-homocysteine transmethylase from mammalian kidney. Biochemistry. 1971 Sep 28;10(20):3765–3769. doi: 10.1021/bi00796a019. [DOI] [PubMed] [Google Scholar]
  28. Mangum J. H., Steuart B. W., North J. A. The isolation of N 5 -methyltetrahydrofolate-homocysteine transmethylase from bovine brain. Arch Biochem Biophys. 1972 Jan;148(1):63–69. doi: 10.1016/0003-9861(72)90115-4. [DOI] [PubMed] [Google Scholar]
  29. Mudd S. H., Uhlendorf B. W., Hinds K. R. Deranged B 12 metabolism: studies of fibroblasts grown in tissue culture. Biochem Med. 1970 Nov;4(3):215–239. doi: 10.1016/0006-2944(70)90050-5. [DOI] [PubMed] [Google Scholar]
  30. PEEL J. L. Vitamin B12 derivatives and the CO2-pyruvate exchange reaction: a reappraisal. J Biol Chem. 1962 Jan;237:PC263–PC265. [PubMed] [Google Scholar]
  31. Perera D. J., Pegrum G. D. In vitro stimulation of chronic lymphocytic leukaemic lymphocytes. Br J Haematol. 1974 Jun;27(2):289–296. doi: 10.1111/j.1365-2141.1974.tb06795.x. [DOI] [PubMed] [Google Scholar]
  32. ROSENTHAL H. L., SARETT H. P. The determination of vitamin B12 activity in human serum. J Biol Chem. 1952 Nov;199(1):433–442. [PubMed] [Google Scholar]
  33. Rachmilewitz M., Lefton F., Gross J. Vitamin B12 content of cells of the blood, bone marrow and liver of the rat. Proc Soc Exp Biol Med. 1966 Apr;121(4):1047–1049. doi: 10.3181/00379727-121-30961. [DOI] [PubMed] [Google Scholar]
  34. SKOOG W. A., BECK W. S. Studies on the fibrinogen, dextran and phytohemagglutinin methods of isolating leukocytes. Blood. 1956 May;11(5):436–454. [PubMed] [Google Scholar]
  35. Sauer H. J., Jaenicke L. Einfacher Test zur Messung der Methionin-Synthetase-(MS-)Aktivität und seine Anwendungsmöglichkeiten in der Klinik. Klin Wochenschr. 1972 Nov 1;50(21):986–990. doi: 10.1007/BF01486992. [DOI] [PubMed] [Google Scholar]
  36. Sauer H., Wilms K., Wilmanns W., Jaenicke L. Die Aktivität der Methionin-Synthetase (5-methyl-5,6,7,8-tetrahydrofolsäure: Homocystransferase) als Proliferationsparameter in wachsenden Zellen. Acta Haematol. 1973;49(4):200–210. doi: 10.1159/000208406. [DOI] [PubMed] [Google Scholar]
  37. Simons K., Weber T. The vitamin B12-binding protein in human leukocytes. Biochim Biophys Acta. 1966 Mar 28;117(1):201–208. doi: 10.1016/0304-4165(66)90167-x. [DOI] [PubMed] [Google Scholar]
  38. Stavrianopoulos J., Jaenicke L. Reaktionsschritte der Methionin-Synthese bei Escherichia coli. Eur J Biochem. 1967 Dec;3(1):95–106. doi: 10.1111/j.1432-1033.1967.tb19502.x. [DOI] [PubMed] [Google Scholar]
  39. Taylor R. T., Hanna M. L., Hutton J. J. 5-methyltetrahydrofolate homocysteine cobalamin methyltransferase in human bone marrow and its relationship to pernicious anemia. Arch Biochem Biophys. 1974 Dec;165(2):787–795. doi: 10.1016/0003-9861(74)90308-7. [DOI] [PubMed] [Google Scholar]
  40. Taylor R. T., Weissbach H. Escherichia coli B N5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase: activation with S-adenosyl-L-methionine and the mechanism for methyl group transfer. Arch Biochem Biophys. 1969 Feb;129(2):745–766. doi: 10.1016/0003-9861(69)90235-5. [DOI] [PubMed] [Google Scholar]
  41. Taylor R. T., Weissbach H. N5-methyltetrahydrofolate-homocysteine transmethylase. Propylation characteristics with the use of a chemical reducing system and purified enzyme. J Biol Chem. 1967 Apr 10;242(7):1509–1516. [PubMed] [Google Scholar]
  42. Taylor R. T., Weissbach H. N5-methyltetrahydrofolate-homocysteine transmethylase. Role of S-adenosylmethionine in vitamin B12-dependent methionine synthesis. J Biol Chem. 1967 Apr 10;242(7):1517–1521. [PubMed] [Google Scholar]
  43. VANDOMMELEN C. K., SLAGBOOM G., MEESTER G. T., WADMAN S. K. REVERSIBLE HYPOGAMMAGLOBULINAEMIA IN CYANOCOBALAMIN (B12) DEFICIENCY. Acta Med Scand. 1963 Aug;174:193–200. doi: 10.1111/j.0954-6820.1963.tb07911.x. [DOI] [PubMed] [Google Scholar]
  44. Valentine F. T. Soluble factors produced by lymphocytes. Ann N Y Acad Sci. 1974;221:317–323. doi: 10.1111/j.1749-6632.1974.tb28232.x. [DOI] [PubMed] [Google Scholar]
  45. WEISSBACH H., PETERKOFSKY A., REDFIELD B. G., DICKERMAN H. STUDIES ON THE TERMINAL REACTION IN THE BIOSYNTHESIS OF METHIONINE. J Biol Chem. 1963 Oct;238:3318–3324. [PubMed] [Google Scholar]
  46. WEISSBACH H., REDFIELD B. G., DICKERMAN H. EFFECT OF VITAMIN B12 ANALOGUES ON METHIONINE FORMATION FROM N5-METHYLTETRAHYDROFOLIC ACID. J Biol Chem. 1964 Jan;239:146–148. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES