Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 2010 Oct 29;193(1):311–312. doi: 10.1128/JB.01234-10

Complete Genome Sequence of Paenibacillus polymyxa SC2, a Strain of Plant Growth-Promoting Rhizobacterium with Broad-Spectrum Antimicrobial Activity

Mingchao Ma 2,, Cuicui Wang 1,, Yanqin Ding 1,, Li Li 2, Delong Shen 2, Xin Jiang 2, Dawei Guan 2, Fengming Cao 2, Huijun Chen 2, Ruihua Feng 2, Xuan Wang 1, Yifan Ge 2, Liangtong Yao 1, Xiaohui Bing 2, Xiaohong Yang 2, Jun Li 2,*, Binghai Du 1,*
PMCID: PMC3019932  PMID: 21037012

Abstract

Paenibacillus polymyxa SC2 is an important plant growth-promoting rhizobacterium (PGPR). Here, we report the complete genome sequence of P. polymyxa SC2. Multiple sets of functional genes have been found in the genome. As far as we know, this is the first complete genome sequence of Paenibacillus polymyxa.


Paenibacillus polymyxa (formerly Bacillus polymyxa) (2), the type species of Paenibacillus, is considered a plant growth-promoting rhizobacterium (PGPR) (12). P. polymyxa is widespread in the soil and widely used in agriculture, industry, and environmental remediation because of its multiple functions (10). P. polymyxa strain SC2 was isolated from the rhizosphere of pepper in Guizhou, China (15), and has been widely used in biological control of soil-borne plant diseases.

Whole-genome sequencing of SC2 was performed with a combined strategy of Roche/454 sequencing (9) and Solexa paired-end sequencing technology (3). Genomic libraries containing 8-kb inserts were constructed, and 153,770 paired-end reads and 103,401 single-end reads were generated using the GS FLX system, giving 15.3-fold coverage of the genome. A total of 97.42% of the reads were assembled into 25 large scaffolds, including 218 nonredundant contigs, using 454 Newbler (454 Life Sciences, Branford, CT). A total of 34,770,992 reads (3-kb library) were generated to reach a depth of 418-fold coverage with an Illumina Solexa Genome Analyzer IIx and mapped to the scaffolds using the Burrows-Wheeler Alignment (BWA) tool (8). Most of the gaps within the scaffolds were filled by local assembly of 454 and Solexa reads. The remainder and the gaps between scaffolds were filled by sequencing PCR products using an ABI 3730 capillary sequencer. The analysis of the genome was performed as described previously (6, 14).

The complete genome sequence of SC2 is composed of a circular 5,731,816-bp chromosome and a 510,115-bp plasmid, with mean GC contents of 54.58% and 37.61%, respectively. There are 5,454 coding genes, 14 rRNA operons, and 110 tRNAs in the chromosome, as well as 649 coding genes and 47 tRNAs in the plasmid. There are many essential genes in the plasmid, such as the genes involving the metabolism of purine, pyrimidine, and lipid, as well as ribosomal proteins, translation elongation factors, and different types of DNA methyltransferase, indicating its importance to the strain's life.

In comparison to Paenibacillus sp. strain JDR-2, an aggressively xylanolytic strain whose public genome is the most highly related to that of SC2, there are 2,615 shared genes and 2,645 unique genes in the chromosome of SC2. There are many genes involved in antibiotic biosynthesis in the chromosome, such as a fusaricidin-synthetic gene (PPSC2_c0086), a polymyxin-synthetic gene cluster (PPSC2_c4710-c4715), a bacitracin synthetase 1 gene (PPSC2_c2653), an iturin A synthetase gene (PPSC2_c2652), a lantibiotic-synthetic gene cluster (PPSC2_c1561-c1567), a bacillorin synthetase B gene (PPSC2_c2638), and a polyketide-synthetic gene cluster (PPSC2_c3386-c3400), according to similarities to the published gene clusters (1, 4, 5, 7, 11, 13).

Nucleotide sequence accession numbers.

The Paenibacillus polymyxa SC2 chromosome and plasmid sequences have been deposited in GenBank under accession numbers CP002213 and CP002214.

Acknowledgments

We thank Tianjin Biochip Corporation for assistance with sequencing and analysis. We thank all teachers for their contributions to the accomplishment of this task.

This work was supported by a National 863 Program of China grant (number 2010AA10A203), the Basic Scientific and Business Fund and Central Public Research Project (grant number 2010-34), and the Special Fund for the Establishment of Modern Agricultural R&D Systems (grant number nycytx-004), Ministry of Finance and Ministry of Agriculture, China.

Footnotes

Published ahead of print on 29 October 2010.

REFERENCES

  • 1.Altena, K., A. Guder, C. Cramer, and G. Bierbaum. 2000. Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Appl. Environ. Microbiol. 66:2565-2571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Ash, C., F. G. Priest, and M. D. Collins. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks, and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64:253-260. [DOI] [PubMed] [Google Scholar]
  • 3.Bentley, D. R., S. Balasubramanian, H. P. Swerdlow, G. P. Smith, J. Milton, C. G. Brown, K. P. Hall, D. J. Evers, C. L. Barnes, H. R. Bignell, J. M. Boutell, J. Bryant, R. J. Carter, R. Keira Cheetham, A. J. Cox, D. J. Ellis, M. R. Flatbush, N. A. Gormley, S. J. Humphray, L. J. Irving, M. S. Karbelashvili, S. M. Kirk, H. Li, X. Liu, K. S. Maisinger, L. J. Murray, B. Obradovic, T. Ost, M. L. Parkinson, M. R. Pratt, I. M. Rasolonjatovo, M. T. Reed, R. Rigatti, C. Rodighiero, M. T. Ross, A. Sabot, S. V. Sankar, A. Scally, G. P. Schroth, M. E. Smith, V. P. Smith, A. Spiridou, P. E. Torrance, S. S. Tzonev, E. H. Vermaas, K. Walter, X. Wu, L. Zhang, M. D. Alam, C. Anastasi, I. C. Aniebo, D. M. Bailey, I. R. Bancarz, S. Banerjee, S. G. Barbour, P. A. Baybayan, V. A. Benoit, K. F. Benson, C. Bevis, P. J. Black, A. Boodhun, J. S. Brennan, J. A. Bridgham, R. C. Brown, A. A. Brown, D. H. Buermann, A. A. Bundu, J. C. Burrows, N. P. Carter, N. Castillo, E. C. M. Chiara, S. Chang, R. Neil Cooley, N. R. Crake, O. O. Dada, K. D. Diakoumakos, B. Dominguez-Fernandez, D. J. Earnshaw, U. C. Egbujor, D. W. Elmore, S. S. Etchin, M. R. Ewan, M. Fedurco, L. J. Fraser, K. V. Fuentes Fajardo, W. Scott Furey, D. George, K. J. Gietzen, C. P. Goddard, G. S. Golda, P. A. Granieri, D. E. Green, D. L. Gustafson, N. F. Hansen, K. Harnish, C. D. Haudenschild, N. I. Heyer, M. M. Hims, J. T. Ho, A. M. Horgan, et al. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53-59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Choi, S. K., S. Y. Park, R. Kim, C. H. Lee, J. F. Kim, and S. H. Park. 2008. Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochem. Biophys. Res. Commun. 365:89-95. [DOI] [PubMed] [Google Scholar]
  • 5.Choi, S. K., S. Y. Park, R. Kim, S. B. Kim, C. H. Lee, J. F. Kim, and S. H. Park. 2009. Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J. Bacteriol. 191:3350-3358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Ferenci, T., Z. Zhou, T. Betteridge, Y. Ren, Y. Liu, L. Feng, P. R. Reeves, and L. Wang. 2009. Genomic sequencing reveals regulatory mutations and recombinational events in the widely used MC4100 lineage of Escherichia coli K-12. J. Bacteriol. 191:4025-4029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Konz, D., A. Klens, K. Schorgendorfer, and M. A. Marahiel. 1997. The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases. Chem. Biol. 4:927-937. [DOI] [PubMed] [Google Scholar]
  • 8.Li, H., and R. Durbin. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589-595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Margulies, M., M. Egholm, W. E. Altman, S. Attiya, J. S. Bader, L. A. Bemben, J. Berka, M. S. Braverman, Y. J. Chen, Z. Chen, S. B. Dewell, L. Du, J. M. Fierro, X. V. Gomes, B. C. Godwin, W. He, S. Helgesen, C. H. Ho, G. P. Irzyk, S. C. Jando, M. L. Alenquer, T. P. Jarvie, K. B. Jirage, J. B. Kim, J. R. Knight, J. R. Lanza, J. H. Leamon, S. M. Lefkowitz, M. Lei, J. Li, K. L. Lohman, H. Lu, V. B. Makhijani, K. E. McDade, M. P. McKenna, E. W. Myers, E. Nickerson, J. R. Nobile, R. Plant, B. P. Puc, M. T. Ronan, G. T. Roth, G. J. Sarkis, J. F. Simons, J. W. Simpson, M. Srinivasan, K. R. Tartaro, A. Tomasz, K. A. Vogt, G. A. Volkmer, S. H. Wang, Y. Wang, M. P. Weiner, P. Yu, R. F. Begley, and J. M. Rothberg. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376-380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Sadhana, L., and S. Tabacchioni. 2009. Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J. Microbiol. 49:2-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Straight, P. D., M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter. 2007. A singular enzymatic megacomplex from Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 104:305-310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Timmusk, S., B. Nicander, U. Granhall, and E. Tillberg. 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 31:1847-1852. [Google Scholar]
  • 13.Tsuge, K., T. Akiyama, and M. Shoda. 2001. Cloning, sequencing, and characterization of the iturin A operon. J. Bacteriol. 183:6265-6273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Zhou, Z., X. Li, B. Liu, L. Beutin, J. Xu, Y. Ren, L. Feng, R. Lan, P. R. Reeves, and L. Wang. 2010. Derivation of Escherichia coli O157:H7 from its O55:H7 precursor. PLoS One 5:e8700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Zhu, H., B. H. Du, and Y. Q. Ding. 2008. Screening and study on biological characteristics of antagonistic bacteria against Fusarium solani. J. Biotechnol. Bull. 1:156-159. (In Chinese.) [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES