Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1972 Feb;51(2):314–325. doi: 10.1172/JCI106816

Effect of Peritubular Protein Concentration on Reabsorption of Sodium and Water in Isolated Perfused Proximal Tubules

Masashi Imai 1, Juha P Kokko 1
PMCID: PMC302129  PMID: 5009115

Abstract

Micropuncture studies have indicated that variation in peritubular oncotic pressure influences net transport of fluid out of the proximal tubule. The present in vitro studies on isolated perfused rabbit proximal convoluted tubules were designed to examine whether protein concentration gradient must act across the peritubular capillary membrane to influence reabsorption, or whether it can exert a direct effect across the tubular basement membrane 71 proximal tubules were perfused with ultrafiltrate made isosmolal to bathing fluids, the latter having identical electrolyte composition as the perfusing ultrafiltrate, but adjusted to three oncotic pressures: hypooncotic, protein 0.0 g/100 ml; control isooncotic serum, protein 6.4 g/100 ml; and hyperoncotic, protein 12.5 g/100 ml. Net volume flux (nl/mm per min), net Na flux (nEq/mm per min), unidirectional Na flux from bath to lumen (nEq/mm per min), and passive permeability coefficient (× 10-5 cm/sec) for Na (PNa), urea (Purea), and sucrose (Psucrose) were determined using isotopic techniques. When the bath was hypooncotic, there was (as compared with isooncotic serum) a significant decrease in net volume (38%) and net sodium (40%) flux, but no change in PNa, Purea, or transtubular potential; however, Psucrose increased significantly (78%). In experiments in which hyperoncotic bath was used, there was (compared with isooncotic serum) an increase in net volume (28%) and net sodium (30%) flux, but transtubular potential difference did not change significantly.

These data demonstrated that changes in the ambient protein concentration gradient exert direct effects upon proximal tubular reabsorption. Because penetration of sucrose (an index of intercellular movement) but not urea (an index of transcellular movement) varied with changes in tubular reabsorption, it is suggested that oncotic pressure acts by altering the rate of back-leak of reabsorbate through extracellular pathways between tubular cells. It is concluded that an effect of protein concentration on reabsorption can be exerted directly across the basement membrane, without necessary interposition of the capillary bed.

Full text

PDF
314

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRESLER E. H. The problem of the volume component of body fluid homeostasis. Am J Med Sci. 1956 Jul;232(1):93–104. doi: 10.1097/00000441-195607000-00014. [DOI] [PubMed] [Google Scholar]
  2. Brenner B. M., Falchuk K. H., Keimowitz R. I., Berliner R. W. The relationship between peritubular capillary protein concentration and fluid reabsorption by the renal proximal tubule. J Clin Invest. 1969 Aug;48(8):1519–1531. doi: 10.1172/JCI106118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brenner B. M., Galla J. H. Influence of postglomerular hematocrit and protein concentration on rat nephron fluid transfer. Am J Physiol. 1971 Jan;220(1):148–161. doi: 10.1152/ajplegacy.1971.220.1.148. [DOI] [PubMed] [Google Scholar]
  4. Brenner B. M., Troy J. L. Postglomerular vascular protein concentration: evidence for a causal role in governing fluid reabsorption and glomerulotublar balance by the renal proximal tubule. J Clin Invest. 1971 Feb;50(2):336–349. doi: 10.1172/JCI106501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burg M. B., Orloff J. Electrical potential difference across proximal convoluted tubules. Am J Physiol. 1970 Dec;219(6):1714–1716. doi: 10.1152/ajplegacy.1970.219.6.1714. [DOI] [PubMed] [Google Scholar]
  6. Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
  7. CURRAN P. F., MACINTOSH J. R. A model system for biological water transport. Nature. 1962 Jan 27;193:347–348. doi: 10.1038/193347a0. [DOI] [PubMed] [Google Scholar]
  8. DE WARDENER H. E., MILLS I. H., CLAPHAM W. F., HAYTER C. J. Studies on the efferent mechanism of the sodium diuresis which follows the administration of intravenous saline in the dog. Clin Sci. 1961 Oct;21:249–258. [PubMed] [Google Scholar]
  9. Diamond J. M., Bossert W. H. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol. 1967 Sep;50(8):2061–2083. doi: 10.1085/jgp.50.8.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. EARLEY L. E. EFFECT OF RENAL ARTERIAL INFUSION OF ALBUMIN ON SALINE DIURESIS IN THE DOG. Proc Soc Exp Biol Med. 1964 Jun;116:262–265. doi: 10.3181/00379727-116-29219. [DOI] [PubMed] [Google Scholar]
  11. Earley L. E., Martino J. A., Friedler R. M. Factors affecting sodium reabsorption by the proximal tubule as determined during blockade of distal sodium reabsorption. J Clin Invest. 1966 Nov;45(11):1668–1684. doi: 10.1172/JCI105474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GIEBISCH G., KLOSE R. M., MALNIC G., SULLIVAN W. J., WINDHAGER E. E. SODIUM MOVEMENT ACROSS SINGLE PERFUSED PROXIMAL TUBULES OF RAT KIDNEYS. J Gen Physiol. 1964 Jul;47:1175–1194. doi: 10.1085/jgp.47.6.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KASHGARIAN M., WARREN Y., MITCHELL R. L., EPSTEIN F. H. EFFECT OF PROTEIN IN TUBULAR FLUID UPON PROXIMAL TUBULAR ABSORPTION. Proc Soc Exp Biol Med. 1964 Dec;117:848–850. doi: 10.3181/00379727-117-29716. [DOI] [PubMed] [Google Scholar]
  14. KEELER R., SCHNIEDEN H. Investigation of mechanism of diuresis produced in the rat by an intravenous infusion of isotonic solution of sodium chloride. Am J Physiol. 1958 Oct;195(1):137–141. doi: 10.1152/ajplegacy.1958.195.1.137. [DOI] [PubMed] [Google Scholar]
  15. Kessler E., Hughes R. C., Orlando C., Shamlou G. Comparative effects of saline and isoncotic albumin in saline on sodium excretion. Proc Soc Exp Biol Med. 1967 Jun;125(2):543–548. doi: 10.3181/00379727-125-32141. [DOI] [PubMed] [Google Scholar]
  16. Kokko J. P., Burg M. B., Orloff J. Characteristics of NaCl and water transport in the renal proximal tubule. J Clin Invest. 1971 Jan;50(1):69–76. doi: 10.1172/JCI106485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kokko J. P., Rector F. C. Flow dependence of transtubular potential difference in isolated perfused segments of rabbit proximal convoluted tubule. J Clin Invest. 1971 Dec;50(12):2745–2750. doi: 10.1172/JCI106776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LEVINSKY N. G., LALONE R. C. THE MECHANISM OF SODIUM DURESIS AFTER SALINE INFUSION IN THE DOG. J Clin Invest. 1963 Aug;42:1261–1276. doi: 10.1172/JCI104811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lewy J. E., Windhager E. E. Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am J Physiol. 1968 May;214(5):943–954. doi: 10.1152/ajplegacy.1968.214.5.943. [DOI] [PubMed] [Google Scholar]
  20. Martino J. A., Earley L. E. Demonstraton of a role of physical factors as determinants of the natriuretic response to volume expansion. J Clin Invest. 1967 Dec;46(12):1963–1978. doi: 10.1172/JCI105686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nizet A. Influence of serumalbumin and dextran on sodium and water excretion by the isolated dog kidney. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;301(1):7–15. doi: 10.1007/BF00412414. [DOI] [PubMed] [Google Scholar]
  22. PETERSDORF R. G., WELT L. G. The effect of an infusion of hyperoncotic albumin on the excretion of water and solutes. J Clin Invest. 1953 Apr;32(4):283–291. doi: 10.1172/JCI102737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rosenfeld S., Kraus R., McCullen A. Effect of renin, ischemia, and plasma protein loading on the isolated perfused kidney. Am J Physiol. 1965 Oct;209(4):835–843. doi: 10.1152/ajplegacy.1965.209.4.835. [DOI] [PubMed] [Google Scholar]
  24. Spitzer A., Windhager E. E. Effect of peritubular oncotic pressure changes on proximal tubular fluid reabsorption. Am J Physiol. 1970 Apr;218(4):1188–1193. doi: 10.1152/ajplegacy.1970.218.4.1188. [DOI] [PubMed] [Google Scholar]
  25. VOGEL G., HEYM E., ANDERSSOHN K. Versuche zur Bedeutung kolloidosmotischer Druckdifferenzen für einen passiven Transportmechanismus in der Nierenkanälchen. Z Gesamte Exp Med. 1955;126(5):485–495. [PubMed] [Google Scholar]
  26. VOGEL G., HEYM E. Untersuchungen zur Bedeutung kolloidosomotischer Druckdifferenzen für den Mechanismus der isosmotischen Flüssigkeitsresorption in der Niere. Pflugers Arch. 1956;262(3):226–232. doi: 10.1007/BF00369703. [DOI] [PubMed] [Google Scholar]
  27. Vereerstraeten P., Toussaint C. Effects of plasmapheresis on renal hemodynamics and sodium excretion in dogs. Pflugers Arch. 1969;306(1):92–102. doi: 10.1007/BF00586613. [DOI] [PubMed] [Google Scholar]
  28. Vereerstraeten P., Toussaint C. Role of the peritubular oncotic pressure on sodium excretion by the avian kidney. Pflugers Arch. 1968;302(1):13–23. doi: 10.1007/BF00586779. [DOI] [PubMed] [Google Scholar]
  29. Vereerstraeten P., de Myttenaere M. Effect of raising the transtubular oncotic gradient on sodium excretion in the dog. Pflugers Arch. 1968;302(1):1–12. doi: 10.1007/BF00586778. [DOI] [PubMed] [Google Scholar]
  30. Vereerstraeten P., de Myttenaere M., Lambert P. P. Réduction de la natriurèse par la perfusion de protéines dans l'artère rénale du chien. Nephron. 1966;3(2):103–122. doi: 10.1159/000179451. [DOI] [PubMed] [Google Scholar]
  31. WELT L. G., ORLOFF J. The effects of an increase in plasma volume on the metabolism and excretion of water and electrolytes by normal subjects. J Clin Invest. 1951 Jul;30(7):751–761. doi: 10.1172/JCI102489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Windhager E. E., Lewy J. E., Spitzer A. Intrarenal control of proximal tubular reabsorption of sodium and water. Nephron. 1969;6(3):247–259. doi: 10.1159/000179732. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES