Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1972 Feb;51(2):373–385. doi: 10.1172/JCI106823

Evidence for a Direct Action of Cholecalciferol and 25-Hydroxycholecalciferol on the Renal Transport of Phosphate, Sodium, and Calcium

Jules B Puschett 1, Joel Moranz 1, Warren S Kurnick 1
PMCID: PMC302136  PMID: 4333022

Abstract

Acute clearance studies were performed in stable thyroparathyroidectomized dogs to evaluate the possibility of a direct renal action of vitamin D and its biologically active 25-hydroxylated metabolite. Alterations in renal hemodynamics and serum calcium concentration were minimized and attempts at vitamin D depletion were not undertaken. Steady-state volume expansion of modest degree was employed as the control experimental situation so that an effect of the vitamin to enhance phosphate reabsorption would not go undetected because of an already maximal phosphate reabsorptive rate secondary to parathyroidectomy. Under these experimental circumstances, 10,000 U of cholecalciferol and 25-120 U of 25-hydroxycholecalciferol (25-HCC) produced significant depressions in the percentage of filtered phosphate excreted (mean declines of 39 and 47%, respectively), which were not attributable to alterations in renal hemodynamics or to changes in the levels of serum calcium or phosphate. There was an accompanying decline in sodium and calcium excretion; mean percentage excretion rates for sodium fell by 38% with vitamin D and 26% with 25HCC, and for calcium this measurement declined by 46 and 23%, respectively. Furthermore, parathyroid hormone and 25HCC produced antagonistic effects on phosphate excretion. These observations provide the first conclusive evidence for a direct (proximal) tubular action of vitamin D to promote phosphate (as well as sodium and calcium) transport.

Full text

PDF
373

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agus Z. S., Puschett J. B., Senesky D., Goldberg M. Mode of action of parathyroid hormone and cyclic adenosine 3',5'-monophosphate on renal tubular phosphate reabsorption in the dog. J Clin Invest. 1971 Mar;50(3):617–626. doi: 10.1172/JCI106532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BRUN C. A rapid method for the determination of para-aminohippuric acid in kidney function tests. J Lab Clin Med. 1951 Jun;37(6):955–958. [PubMed] [Google Scholar]
  3. Bauer W., Marble A., Claflin D. STUDIES ON THE MODE OF ACTION OF IRRADIATED ERGOSTEROL: I. Its effect on the Calcium, Phosphorus and Nitrogen Metabolism of Normal Individuals. J Clin Invest. 1932 Jan;11(1):1–19. doi: 10.1172/JCI100392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blunt J. W., DeLuca H. F. The synthesis of 25-hydroxycholecalciferol. A biologically active metabolite of vitamin D3. Biochemistry. 1969 Feb;8(2):671–675. doi: 10.1021/bi00830a031. [DOI] [PubMed] [Google Scholar]
  5. Blunt J. W., Tanaka Y., DeLuca H. F. Biological activity of 25-hydroxycholecalciferol, a metabolite of vitamin D3. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1503–1506. doi: 10.1073/pnas.61.4.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blythe W. B., Gitelman H. J., Welt L. G. Effect of expansion of the extracellular space on the rate of urinary excretion of calcium. Am J Physiol. 1968 Jan;214(1):52–57. doi: 10.1152/ajplegacy.1968.214.1.52. [DOI] [PubMed] [Google Scholar]
  7. CRAWFORD J. D., GRIBETZ D., TALBOT N. B. Mechanism of renal tubular phosphate reabsorption and the influence thereon of vitamin D in completely parathyroidectomized rats. Am J Physiol. 1955 Jan;180(1):156–162. doi: 10.1152/ajplegacy.1954.180.1.156. [DOI] [PubMed] [Google Scholar]
  8. Chase L. R., Aurbach G. D. Renal adenyl cyclase: anatomically separate sites for parathyroid hormone and vasopressin. Science. 1968 Feb 2;159(3814):545–547. doi: 10.1126/science.159.3814.545. [DOI] [PubMed] [Google Scholar]
  9. Chu H. I., Liu S. H., Yu T. F., Hsu H. C., Cheng T. Y., Chao H. C. CALCIUM AND PHOSPHORUS METABOLISM IN OSTEOMALACIA X. FURTHER STUDIES ON VITAMIN D ACTION: EARLY SIGNS OF DEPLETION AND EFFECT OF MINIMAL DOSES. J Clin Invest. 1940 Mar;19(2):349–363. doi: 10.1172/JCI101137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clark I., Rivera-Cordero F. Effect of parathyroid function on absorption and excretion of calcium, magnesium and phosphate by rats. Endocrinology. 1971 Feb;88(2):302–308. doi: 10.1210/endo-88-2-302. [DOI] [PubMed] [Google Scholar]
  11. DeLuca H. F. Mechanism of action and metabolic fate of vitamin D. Vitam Horm. 1967;25:315–367. doi: 10.1016/s0083-6729(08)60039-4. [DOI] [PubMed] [Google Scholar]
  12. DeLuca H. F. Recent advances in the metabolism and function of vitamin D. Fed Proc. 1969 Sep-Oct;28(5):1678–1689. [PubMed] [Google Scholar]
  13. Duarte C. G., Watson J. F. Calcium reabsorption in proximal tubule of the dog nephron. Am J Physiol. 1967 Jun;212(6):1355–1360. doi: 10.1152/ajplegacy.1967.212.6.1355. [DOI] [PubMed] [Google Scholar]
  14. FUHR J., KACZMARCZYK J., KRUTTGEN C. D. Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin Wochenschr. 1955 Aug 1;33(29-30):729–730. doi: 10.1007/BF01473295. [DOI] [PubMed] [Google Scholar]
  15. Fraser D. R., Kodicek E. Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature. 1970 Nov 21;228(5273):764–766. doi: 10.1038/228764a0. [DOI] [PubMed] [Google Scholar]
  16. Fraser D., Kooh S. W., Scriver C. R. Hyperparathyroidism as the cause of hyperaminoaciduria and phosphaturia in human vitamin D deficiency. Pediatr Res. 1967 Nov;1(6):425–435. doi: 10.1203/00006450-196711000-00001. [DOI] [PubMed] [Google Scholar]
  17. Frick A. Mechanism of inorganic phosphate diuresis secondary to saline infusions in the rat. Excretion of sodium, inorganic phosphate, and calcium in normal and in parathyroidectomized rats. Pflugers Arch. 1969;313(2):106–122. doi: 10.1007/BF00586239. [DOI] [PubMed] [Google Scholar]
  18. GOTTSCHALK C. W. RENAL TUBULAR FUNCTION: LESSONS FROM MICROPUNCTURE. Harvey Lect. 1963;58:99–124. [PubMed] [Google Scholar]
  19. GRAN F. C. The retention of parenterally injected calcium in rachitic dogs. Acta Physiol Scand. 1960 Oct 31;50:132–139. doi: 10.1111/j.1748-1716.1960.tb02084.x. [DOI] [PubMed] [Google Scholar]
  20. Gray R., Boyle I., DeLuca H. F. Vitamin D metabolism: the role of kidney tissue. Science. 1971 Jun 18;172(3989):1232–1234. doi: 10.1126/science.172.3989.1232. [DOI] [PubMed] [Google Scholar]
  21. HANDLER J. S. A study of renal phosphate excretion in the dog. Am J Physiol. 1962 Apr;202:787–790. doi: 10.1152/ajplegacy.1962.202.4.787. [DOI] [PubMed] [Google Scholar]
  22. HARRISON H. E. Mechanisms of action of vitamin D. Pediatrics. 1954 Oct;14(4):285–295. [PubMed] [Google Scholar]
  23. Ham A. W., Littner N., Drake T. G., Robertson E. C., Tisdall F. F. Physiological hypertrophy of the parathyroids, its cause and its relation to rickets. Am J Pathol. 1940 May;16(3):277–286. [PMC free article] [PubMed] [Google Scholar]
  24. Harrison H. E., Harrison H. C. THE RENAL EXCRETION OF INORGANIC PHOSPHATE IN RELATION TO THE ACTION OF VITAMIN D AND PARATHYROID HORMONE. J Clin Invest. 1941 Jan;20(1):47–55. doi: 10.1172/JCI101194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Haussler M. R., Myrtle J. F., Norman A. W. The association of a metabolite of vitamin D3 with intestinal mucosa chromatin in vivo. J Biol Chem. 1968 Aug 10;243(15):4055–4064. [PubMed] [Google Scholar]
  26. Holick M. F., Schnoes H. K., DeLuca H. F. Identification of 1,25-dihydroxycholecalciferol, a form of vitamin D3 metabolically active in the intestine. Proc Natl Acad Sci U S A. 1971 Apr;68(4):803–804. doi: 10.1073/pnas.68.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. JONXIS J. H. Phosphate metabolism in rickets and tetany. Helv Paediatr Acta. 1959 Dec;14:491–496. [PubMed] [Google Scholar]
  28. KLEIN R., GOW R. C. Interaction of parathyroid hormone and vitamin D on the renal excretion of phosphate. J Clin Endocrinol Metab. 1953 Mar;13(3):271–282. doi: 10.1210/jcem-13-3-271. [DOI] [PubMed] [Google Scholar]
  29. Kodicek E., Lawson D. E., Wilson P. W. Biological activity of a polar metabolite of vitamin D. Nature. 1970 Nov 21;228(5273):763–764. doi: 10.1038/228763a0. [DOI] [PubMed] [Google Scholar]
  30. LASSITER W. E., GOTTSCHALK C. W., MYLLE M. Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am J Physiol. 1961 Jun;200:1139–1147. doi: 10.1152/ajplegacy.1961.200.6.1139. [DOI] [PubMed] [Google Scholar]
  31. Lavender A. R., Pullman T. N. Changes in inorganic phosphate excretion induced by renal arterial infusion of calcium. Am J Physiol. 1963 Nov;205(5):1025–1032. doi: 10.1152/ajplegacy.1963.205.5.1025. [DOI] [PubMed] [Google Scholar]
  32. Lawson D. E., Fraser D. R., Kodicek E., Morris H. R., Williams D. H. Identification of 1,25-dihydroxycholecalciferol, a new kidney hormone controlling calcium metabolism. Nature. 1971 Mar 26;230(5291):228–230. doi: 10.1038/230228a0. [DOI] [PubMed] [Google Scholar]
  33. Lawson D. E., Wilson P. W., Kodicek E. Metabolism of vitamin D. A new cholecalciferol metabolite, involving loss of hydrogen at C-1, in chick intestinal nuclei. Biochem J. 1969 Nov;115(2):269–277. doi: 10.1042/bj1150269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lund J., DeLuca H. F. Biologically active metabolite of vitamin D3 from bone, liver, and blood serum. J Lipid Res. 1966 Nov;7(6):739–744. [PubMed] [Google Scholar]
  35. Massry S. G., Coburn J. W., Chapman L. W., Kleeman C. R. Effect of NaCl infusion on urinary Ca++ and Mg++ during reduction in their filtered loads. Am J Physiol. 1967 Nov;213(5):1218–1224. doi: 10.1152/ajplegacy.1967.213.5.1218. [DOI] [PubMed] [Google Scholar]
  36. Massry S. G., Coburn J. W., Kleeman C. R. The influence of extracellular volume expansion on renal phosphate reabsorption in the dog. J Clin Invest. 1969 Jul;48(7):1237–1245. doi: 10.1172/JCI106088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Morel F., Roinel N., Le Grimellec C. Electron probe analysis of tubular fluid composition. Nephron. 1969;6(3):350–364. doi: 10.1159/000179738. [DOI] [PubMed] [Google Scholar]
  38. Myrtle J. F., Haussler M. R., Norman A. W. Evidence for the biologically active form of cholecalciferol in the intestine. J Biol Chem. 1970 Mar 10;245(5):1190–1196. [PubMed] [Google Scholar]
  39. Ney R. L., Kelly G., Bartter F. C. Actions of vitamin D independent of the parathyroid glands. Endocrinology. 1968 Apr;82(4):760–766. doi: 10.1210/endo-82-4-760. [DOI] [PubMed] [Google Scholar]
  40. Norman A. W. The mode of action of vitamin D. Biol Rev Camb Philos Soc. 1968 Feb;43(1):97–137. doi: 10.1111/j.1469-185x.1968.tb01111.x. [DOI] [PubMed] [Google Scholar]
  41. Omdahl J., Holick M., Suda T., Tanaka Y., DeLuca H. F. Biological activity of 1,25-dihydroxycholecalciferol. Biochemistry. 1971 Jul 20;10(15):2935–2940. doi: 10.1021/bi00791a022. [DOI] [PubMed] [Google Scholar]
  42. Ponchon G., Deluca H. F. Metabolites of vitamin D3 and their biologic activity. J Nutr. 1969 Oct;99(2):157–167. doi: 10.1093/jn/99.2.157. [DOI] [PubMed] [Google Scholar]
  43. Ponchon G., Kennan A. L., DeLuca H. F. "Activation" of vitamin D by the liver. J Clin Invest. 1969 Nov;48(11):2032–2037. doi: 10.1172/JCI106168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. RASMUSSEN H., DELUCA H. F. CALCIUM HOMEOSTASIS. Ergeb Physiol. 1963;53:108–173. [PubMed] [Google Scholar]
  45. RASMUSSEN H., DELUCA H., ARNAUD C., HAWKER C., VONSTEDINGK M. THE RELATIONSHIP BETWEEN VITAMIN D AND PARATHYROID HORMONE. J Clin Invest. 1963 Dec;42:1940–1946. doi: 10.1172/JCI104880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rasmussen H., Anast C., Arnaud C. Thyrocalcitonin, EGTA, and urinary electrolyte excretion. J Clin Invest. 1967 May;46(5):746–752. doi: 10.1172/JCI105575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. STEENDIJK R. THE EFFECT OF PARATHYROID EXTRACT ON THE SERUM CONCENTRATIONS OF CALCIUM AND INORGANIC PHOSPHATE IN ACTIVE AND HEALING RICKETS. Acta Paediatr. 1964 Mar;53:105–108. doi: 10.1111/j.1651-2227.1964.tb07216.x. [DOI] [PubMed] [Google Scholar]
  48. STRICKLER J. C., THOMPSON D. D., KLOSE R. M., GIEBISCH G. MICROPUNCTURE STUDY OF INORGANIC PHOSPHATE EXCRETION IN THE RAT. J Clin Invest. 1964 Aug;43:1596–1607. doi: 10.1172/JCI105035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Suki W. N., Martinez-Maldonado M., Rouse D., Terry A. Effect of expansion of extracellular fluid volume on renal phosphate handling. J Clin Invest. 1969 Oct;48(10):1888–1894. doi: 10.1172/JCI106155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. TAITZ L. S., DE LACY C. D. Parathyroid function in vitamin D deficiency rickets. I. Phosphorus excretion index in vitamin D deficiency rickets in South African Bantu infants. Pediatrics. 1962 Dec;30:875–883. [PubMed] [Google Scholar]
  51. THOMPSON D. D., HIATT H. H. Renal reabsorption of phosphate in normal human subjects and in patients with parathyroid disease. J Clin Invest. 1957 Apr;36(4):550–556. doi: 10.1172/JCI103453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Tanaka Y., DeLuca H. F., Omdahl J., Holick M. F. Mechanism of action of 1,25-dihydroxycholecalciferol on intestinal calcium transport. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1286–1288. doi: 10.1073/pnas.68.6.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. WALSER M. Calcium clearance as a function of sodium clearance in the dog. Am J Physiol. 1961 May;200:1099–1104. doi: 10.1152/ajplegacy.1961.200.5.1099. [DOI] [PubMed] [Google Scholar]
  54. WINDHAGER E. E., GIEBISCH G. Micropuncture study of renal tubular transfer of sodium chloride in the rat. Am J Physiol. 1961 Mar;200:581–590. doi: 10.1152/ajplegacy.1961.200.3.581. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES