Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1972 Mar;51(3):677–684. doi: 10.1172/JCI106856

Immunological Studies of Y Protein. A MAJOR CYTOPLASMIC ORGANIC ANION-BINDING PROTEIN IN RAT LIVER

Gerald Fleischner 1, John Robbins 1, Irwin M Arias 1
PMCID: PMC302173  PMID: 4622106

Abstract

An antibody produced against rat Y protein, the major cytoplasmic organic anion-binding protein in liver, was characterized. The antibody precipitated Y protein from liver supernatant fractions and specifically removed the organic anion-binding capacity from this fraction.

Y protein was detected by immunodiffusion with this antibody in the supernates of rat liver, kidney, and small intestinal mucosa and was not detected in supernates of 16 other tissues including bile and serum. Precipitation with anti-Y was not detected with supernates of liver from 20 other species, including man.

Quantitative radial immunodiffusion revealed Y protein to constitute 4.5% of supernatant protein in rat liver and approximately 2% of supernatant protein in rat kidney and small intestinal mucosa.

Phenobarbital administration increased the concentration of Y protein in rat liver by 280%, but not in kidney or small intestinal mucosa, and was associated with increased plasma disappearance of sulfobromphthalein sodium, indocyanine green, and bilirubin, and increased hepatic, but not kidney or small intestinal mucosal, content of these organic anions. These observations provide further evidence indicating that the concentration of Y protein is a major determinant of organic anion flux across the plasma membrane of the liver cell.

Immunodiffusion and immunoelectrophoresis revealed serological identity between Y protein, cortisol metabolite-binding protein I. and the major azocarcinogen-binding protein.

Full text

PDF
677

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRAUER R. W., PESSOTTI R. L., KREBS J. S. The distribution and excretion of S35-labeled sulfobromophthalein-sodium administered to dogs by continuous infusion. J Clin Invest. 1955 Jan;34(1):35–43. doi: 10.1172/JCI103060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldwin R. W., Barker C. R., Moore M. Distribution of a basic azo-dye-binding protein in normal rat tissues anc carcinogen-induced hepatomata. Br J Cancer. 1968 Dec;22(4):776–786. doi: 10.1038/bjc.1968.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berthelot P., Billing B. H. Effect of bunamiodyl on hepatic uptake of sulfobromophthalein in the rat. Am J Physiol. 1966 Aug;211(2):395–399. doi: 10.1152/ajplegacy.1966.211.2.395. [DOI] [PubMed] [Google Scholar]
  4. Brodie B. B., Reid W. D., Cho A. K., Sipes G., Krishna G., Gillette J. R. Possible mechanism of liver necrosis caused by aromatic organic compounds. Proc Natl Acad Sci U S A. 1971 Jan;68(1):160–164. doi: 10.1073/pnas.68.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HARGREAVES T. THE ESTIMATION OF BILIRUBIN IN LIVER. Clin Chim Acta. 1965 Mar;11:278–280. doi: 10.1016/0009-8981(65)90075-6. [DOI] [PubMed] [Google Scholar]
  6. Ketterer B., Christodoulides L. Two specific azodye-carcinogen-binding proteins of the rat liver. The identity of amino acid residues which bind the azodye. Chem Biol Interact. 1969 Dec;1(2):173–183. doi: 10.1016/0009-2797(69)90005-2. [DOI] [PubMed] [Google Scholar]
  7. Ketterer B., Ross-Mansell P., Whitehead J. K. The isolation of carcinogen-binding protein from livers of rats given 4-dimethylaminoazobenzene. Biochem J. 1967 May;103(2):316–324. doi: 10.1042/bj1030316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LEVY H. B., SOBER H. A. A simple chromatographic method for preparation of gamma globulin. Proc Soc Exp Biol Med. 1960 Jan;103:250–252. doi: 10.3181/00379727-103-25476. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Levi A. J., Gatmaitan Z., Arias I. M. Deficiency of hepatic organic anion-binding protein as a possible cause of non-haemolytic unconjugated hyperbilirubinaemia in the newborn. Lancet. 1969 Jul 19;2(7612):139–140. doi: 10.1016/s0140-6736(69)92444-1. [DOI] [PubMed] [Google Scholar]
  11. Levi A. J., Gatmaitan Z., Arias I. M. Deficiency of hepatic organic anion-binding protein, impaired organic amnion uptake by liver and "physiologic" jaundice in newborn monkeys. N Engl J Med. 1970 Nov 19;283(21):1136–1139. doi: 10.1056/NEJM197011192832104. [DOI] [PubMed] [Google Scholar]
  12. Levi A. J., Gatmaitan Z., Arias I. M. Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromophthalein, and other anions. J Clin Invest. 1969 Nov;48(11):2156–2167. doi: 10.1172/JCI106182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Levine R. I., Reyes H., Levi A. J., Gatmaitan Z., Arias I. M. Phylogenetic study of organic anion transfer from plasma into the liver. Nat New Biol. 1971 Jun 30;231(26):277–279. doi: 10.1038/newbio231277a0. [DOI] [PubMed] [Google Scholar]
  14. Litwack G., Ketterer B., Arias I. M. Ligandin: a hepatic protein which binds steroids, bilirubin, carcinogens and a number of exogenous organic anions. Nature. 1971 Dec 24;234(5330):466–467. doi: 10.1038/234466a0. [DOI] [PubMed] [Google Scholar]
  15. Mancini G., Carbonara A. O., Heremans J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry. 1965 Sep;2(3):235–254. doi: 10.1016/0019-2791(65)90004-2. [DOI] [PubMed] [Google Scholar]
  16. Morey K. S., Litwack G. Isolation and properties of cortisol metabolite binding proteins of rat liver cytosol. Biochemistry. 1969 Dec;8(12):4813–4821. doi: 10.1021/bi00840a024. [DOI] [PubMed] [Google Scholar]
  17. NORMAN A. APPLICATION OF GEL FILTRATION OF BILE ACIDS TO STUDIES OF LIPID-COMPLEXES IN BILE. Proc Soc Exp Biol Med. 1964 Aug-Sep;116:902–905. doi: 10.3181/00379727-116-29403. [DOI] [PubMed] [Google Scholar]
  18. OUCHTERLONY O. Diffusion-in-gel methods for immunological analysis. Prog Allergy. 1958;5:1–78. [PubMed] [Google Scholar]
  19. Reyes H., Levi A. J., Gatmaitan Z., Arias I. M. Organic anion-binding protein in rat liver: drug induction and its physiologic consequence. Proc Natl Acad Sci U S A. 1969 Sep;64(1):168–170. doi: 10.1073/pnas.64.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reyes H., Levi A. J., Gatmaitan Z., Arias I. M. Studies of Y and Z, two hepatic cytoplasmic organic anion-binding proteins: effect of drugs, chemicals, hormones, and cholestasis. J Clin Invest. 1971 Nov;50(11):2242–2252. doi: 10.1172/JCI106721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reyes H., Levine R., Levi A. J., Gatmaitan Z., Arias I. M. Bilirubin: a model for studies of drug metabolism in man. Ann N Y Acad Sci. 1971 Jul 6;179:520–528. doi: 10.1111/j.1749-6632.1971.tb46930.x. [DOI] [PubMed] [Google Scholar]
  22. SCHMID R., AXELROD J., HAMMAKER L., SWARM R. L. Congenital jaundice in rats, due to a defect in glucuronide formation. J Clin Invest. 1958 Aug;37(8):1123–1130. doi: 10.1172/JCI103702. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES