Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1972 Apr;51(4):749–759. doi: 10.1172/JCI106869

25-Hydroxycholecalciferol. A COMPARATIVE STUDY IN DEFICIENCY RICKETS AND DIFFERENT TYPES OF RESISTANT RICKETS

Sonia Balsan 1, Michele Garabedian 1
PMCID: PMC302187  PMID: 4335443

Abstract

The effects of 25-hydroxycholecalciferol were studied in 4 children with deficiency rickets and 22 children with D-resistant rickets, including patients with hereditary hypophosphatemic D-resistant rickets, “pseudo-deficiency” rickets, and rickets secondary to cystinosis or to tyrosinosis. Three protocols were used. (a) 8 days after a single oral dose of 16,000 IU of 25-hydroxycholecalciferol, normalization of all biological parameters was observed in all cases of deficiency rickets. A complete lack of response was observed in the different types of resistant rickets. (b) Under prolonged administration of 2,640 IU/day for 2 months, clinical-biological symptoms and X-ray lesions disappeared, and a catch-up growth pattern was observed in deficiency rickets; no relapse of rickets occurred up to 5 months after therapy was stopped. The same dose had no significant effect in 10 patients with hereditary hypophosphatemic D-resistant rickets. A bone biopsy performed in one case showed the persistence of characteristic lesions. (c) With increasing doses of 25-hydroxycholecalciferol varying from 6,000 to 30,000 IU/day and a follow-up of 6 months up to 2 yr duration, clinical-biological-radiologic recovery and catch-up growht was obtained in all cases of “pseudo-deficiency” rickets. In hypophosphatemic hereditary D-resistant rickets, 5 out of 13 patients' serum concentration of phosphorus reached at least 30 mg/liter, but a catch-up growth pattern was not observed. These results indicate that (a) 25-hydroxycholecalciferol is highly active in deficiency rickets; (b) a defect in the conversion of vitamin D3 to its active 25-hydroxy metabolite is probably not the metabolic defect in any of the different types of vitamin D-resistant rickets studied.

Full text

PDF
749

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antener I., Vuataz L., Bruschi A., Kaeser M. Determination of citric acid in urine and in serum. Z Klin Chem Klin Biochem. 1966 Nov;4(6):296–298. doi: 10.1515/cclm.1966.4.6.296. [DOI] [PubMed] [Google Scholar]
  2. Avioli L. V., Birge S., Lee S. W., Slatopolsky E. The metabolic fate of vitamin D3-3H in chronic renal failure. J Clin Invest. 1968 Oct;47(10):2239–2252. doi: 10.1172/JCI105909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Avioli L. V., Williams T. F., Lund J., DeLuca H. F. Metabolism of vitamin D3-3H in vitamin D-resistant rickets and familial hypophosphatemia. J Clin Invest. 1967 Dec;46(12):1907–1915. doi: 10.1172/JCI105680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balsan S. 25-hydroxycholecalciferol: effects in idiopathic vitamin D-resistant rickets. Calcif Tissue Res. 1970;(Suppl):45–46. doi: 10.1007/BF02152346. [DOI] [PubMed] [Google Scholar]
  5. Balsan S., Guivarch J., Sachs C., Garabedian M. 25-hydroxycholécalciférol. Effet d'une dose unique chez l'enfant normal. Rev Eur Etud Clin Biol. 1970 May;15(5):515–521. [PubMed] [Google Scholar]
  6. Blunt J. W., DeLuca H. F., Schnoes H. K. 25-hydroxycholecalciferol. A biologically active metabolite of vitamin D3. Biochemistry. 1968 Oct;7(10):3317–3322. doi: 10.1021/bi00850a001. [DOI] [PubMed] [Google Scholar]
  7. Blunt J. W., DeLuca H. F. The synthesis of 25-hydroxycholecalciferol. A biologically active metabolite of vitamin D3. Biochemistry. 1969 Feb;8(2):671–675. doi: 10.1021/bi00830a031. [DOI] [PubMed] [Google Scholar]
  8. Blunt J. W., Tanaka Y., DeLuca H. F. The biological activity of 25-hydroxycholecalciferol, a metabolite of vitamin D3. Proc Natl Acad Sci U S A. 1968 Oct;61(2):717–718. doi: 10.1073/pnas.61.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen T. C., Weber J. C., DeLuca H. F. On the subcellular location of vitamin D metabolites in intestine. J Biol Chem. 1970 Aug 10;245(15):3776–3780. [PubMed] [Google Scholar]
  10. Cousins R. J., DeLuca H. F., Chen T., Suda T., Tanaka Y. Metabolism and subcellular location of 25-hydroxycholecalciferol in intestinal mucosa. Biochemistry. 1970 Mar 17;9(6):1453–1459. doi: 10.1021/bi00808a021. [DOI] [PubMed] [Google Scholar]
  11. DeLuca H. F., Lund J., Rosenbloom A., Lobeck C. C. Metabolism of tritiated vitamin D3 in familial vitamin D-resistant rickets with hypophosphatemia. J Pediatr. 1967 May;70(5):828–832. doi: 10.1016/s0022-3476(67)80342-1. [DOI] [PubMed] [Google Scholar]
  12. DeLuca H. F. Recent advances in the metabolism and function of vitamin D. Fed Proc. 1969 Sep-Oct;28(5):1678–1689. [PubMed] [Google Scholar]
  13. DeLuca H. F., Suda T., Schnoes H. K., Tanaka Y., Holick M. F. 25,26-dihydroxycholecalciferol, a metabolite of vitamin D3 with intestinal calcium transport activity. Biochemistry. 1970 Nov 24;9(24):4776–4780. doi: 10.1021/bi00826a022. [DOI] [PubMed] [Google Scholar]
  14. Earp H. S., Ney R. L., Gitelman H. J., Richman R., DeLuca H. F. Effects of 25-hydroxycholecalciferol in patients with familial hypophosphatemia and vitamin-D-resistant rickets. N Engl J Med. 1970 Sep 17;283(12):627–630. doi: 10.1056/NEJM197009172831204. [DOI] [PubMed] [Google Scholar]
  15. Fraser D. R., Kodicek E. Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature. 1970 Nov 21;228(5273):764–766. doi: 10.1038/228764a0. [DOI] [PubMed] [Google Scholar]
  16. Haussler M. R., Boyce D. W., Littledike E. T., Rasmussen H. A rapidly acting metabolite of vitamin D3. Proc Natl Acad Sci U S A. 1971 Jan;68(1):177–181. doi: 10.1073/pnas.68.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holick M. F., Schnoes H. K., DeLuca H. F. Identification of 1,25-dihydroxycholecalciferol, a form of vitamin D3 metabolically active in the intestine. Proc Natl Acad Sci U S A. 1971 Apr;68(4):803–804. doi: 10.1073/pnas.68.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Horsting M., DeLuca H. F. In vitro production of 25-hydroxycholecalciferol. Biochem Biophys Res Commun. 1969 Jul 23;36(2):251–256. doi: 10.1016/0006-291x(69)90322-2. [DOI] [PubMed] [Google Scholar]
  19. Kodicek E., Lawson D. E., Wilson P. W. Biological activity of a polar metabolite of vitamin D. Nature. 1970 Nov 21;228(5273):763–764. doi: 10.1038/228763a0. [DOI] [PubMed] [Google Scholar]
  20. Lund J., DeLuca H. F. Biologically active metabolite of vitamin D3 from bone, liver, and blood serum. J Lipid Res. 1966 Nov;7(6):739–744. [PubMed] [Google Scholar]
  21. Martin D. L., Melancon M. J., Jr, DeLuca H. F. Vitamin D stimulated, calcium-dependent adenosine triphosphatase from brush borders of rat small intestine. Biochem Biophys Res Commun. 1969 Jun 27;35(6):819–823. doi: 10.1016/0006-291x(69)90697-4. [DOI] [PubMed] [Google Scholar]
  22. Olson E. B., DeLuca H. F. 25-hydroxycholecalciferol: direct effect on calcium transport. Science. 1969 Jul 25;165(3891):405–407. doi: 10.1126/science.165.3891.405. [DOI] [PubMed] [Google Scholar]
  23. PRADER A., ILLIG R., HEIERLI E. [An unusual form of primary vitamin D-resistant rickets with hypocalcemia and autosomal-dominant hereditary transmission: hereditary pseudo-deficiency rickets]. Helv Paediatr Acta. 1961 Dec;16:452–468. [PubMed] [Google Scholar]
  24. Ponchon G., DeLuca H. F. The role of the liver in the metabolism of vitamin D. J Clin Invest. 1969 Jul;48(7):1273–1279. doi: 10.1172/JCI106093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Seelig M. S. Vitamin D and cardiovascular, renal, and brain damage in infancy and childhood. Ann N Y Acad Sci. 1969 Sep 26;147(15):539–582. doi: 10.1111/j.1749-6632.1967.tb41272.x. [DOI] [PubMed] [Google Scholar]
  26. Smith J. E., Goodman D. S. The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma. J Clin Invest. 1971 Oct;50(10):2159–2167. doi: 10.1172/JCI106710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stohs S. J., DeLuca H. F. Subcellular location of vitamin D and its metabolites in intestinal mucosa after a 10-IU dose. Biochemistry. 1967 Nov;6(11):3338–3349. doi: 10.1021/bi00863a002. [DOI] [PubMed] [Google Scholar]
  28. Suda T., DeLuca H. F., Schnoes H. K., Blunt J. W. The isolation and identification of 25-hydroxyergocalciferol. Biochemistry. 1969 Sep;8(9):3515–3520. doi: 10.1021/bi00837a005. [DOI] [PubMed] [Google Scholar]
  29. Suda T., DeLuca H. F., Schnoes H. K., Ponchon G., Tanaka Y., Holick M. F. 21,25-dihydroxycholecalciferol. A metabolite of vitamin D3 preferentially active on bone. Biochemistry. 1970 Jul 7;9(14):2917–2922. doi: 10.1021/bi00816a025. [DOI] [PubMed] [Google Scholar]
  30. Suda T., DeLuca H. F., Tanaka Y. Biological activity of 25-hydroxyergocalciferol in rats. J Nutr. 1970 Sep;100(9):1049–1052. doi: 10.1093/jn/100.9.1049. [DOI] [PubMed] [Google Scholar]
  31. Trummel C. L., Raisz L. G., Blunt J. W., Deluca H. F. 25-Hydroxycholecalciferol: stimulation of bone resorption in tissue culture. Science. 1969 Mar 28;163(3874):1450–1451. doi: 10.1126/science.163.3874.1450. [DOI] [PubMed] [Google Scholar]
  32. Witmer G., Balsan S. Biopsie osseuse dans quatre cas de rachitisme vitamino-résistant idiopathique. Pathol Biol. 1968 Apr;16(7):421–429. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES