Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1972 Apr;51(4):964–977. doi: 10.1172/JCI106891

Measurement of Regional Myocardial Perfusion in Man with 133Xenon and a Scintillation Camera

Paul J Cannon 1,2, Ralph B Dell 1,2, Edward M Dwyer Jr 1,2
PMCID: PMC302210  PMID: 5014620

Abstract

A method was devised to quantitate regional capillary perfusion in the human heart by measuring the clearance constants (k) of Xenon-133 washout from multiple areas of the myocardium with a multiple-crystal scintillation camera. In 17 subjects, 133Xe was injected into the right or left coronary artery or both and counts per second (cps) were recorded simultaneously on magnetic tape from each of 294 scintillation crystals viewing the precordium through a multichannel collimator. Data were processed by a digital computer. Crystals detecting the myocardial washout of 133Xe were distinguished from those monitoring pulmonary excretion by positioning radioactive markers at the cardiac margins, and by a computer printout of the peak cps recorded by each crystal and its time after isotope injection into the coronary artery. The slopes of the initial segment of the multiple 133Xe curves obtained in each study were calculated by the method of least squares using a monoexponential model. Myocardial blood flow rates in the cardiac regions viewed by the individual crystals were calculated (assuming a blood to myocardium partition coefficient of 0.72) along with the SD of every flow measurement. The pattern of myocardial perfusion rates so obtained was superimposed over a tracing of the subject's coronary arteriogram. Scintiphotographs showing the arrival and washout of isotope from various regions of myocardium and the area of tissue perfused by each coronary artery were obtained by replaying the data tape on an oscilloscope. Significant regional variations in local myocardial perfusion rates were observed in hearts with normal coronary arteries. When capillary flow measurements from crystals overlying the various cardiac chambers were averaged in each subject, the mean myocardial blood flow rate of the left ventricle in 17 patients, 64.1 ±13.9 (SD) ml/100 g·min, significantly exceeded that of the right ventricle, 47.8 ±10.9 ml/100 g·min, and of the right atrial region, 33.6 ±10.3 ml/100 g·min. The approach may facilitate more objective assessment of: myocardial capillary perfusion in patients with angina pactoris, the pharmacology of antianginal drugs, and the efficacy of surgical procedures to revascularize ischemic myocardium.

Full text

PDF
964

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AFONSO S., ROWE G. G., LOWE W. C., CRUMPTON C. W. SYSTEMIC AND CORONARY HEMODYNAMIC EFFECTS OF ISOSORBIDE DINITRATE. Am J Med Sci. 1963 Nov;246:584–589. doi: 10.1097/00000441-196311000-00009. [DOI] [PubMed] [Google Scholar]
  2. Bassingthwaighte J. B. Blood flow and diffusion through mammalian organs. Science. 1970 Mar 6;167(3923):1347–1353. doi: 10.1126/science.167.3923.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bassingthwaighte J. B., Strandell T., Donald D. E. Estimation of coronary blood flow by washout of diffusible indicators. Circ Res. 1968 Aug;23(2):259–278. doi: 10.1161/01.res.23.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Becker L. C., Fortuin N. J., Pitt B. Effect of ischemia and antianginal drugs on the distribution of radioactive microspheres in the canine left ventricle. Circ Res. 1971 Feb;28(2):263–269. doi: 10.1161/01.res.28.2.263. [DOI] [PubMed] [Google Scholar]
  5. Brener B. J., Warren R. Internal-mammary implantation operations for relief of myocardial ischemia. N Engl J Med. 1965 Aug 26;273(9):479–489. doi: 10.1056/NEJM196508262730905. [DOI] [PubMed] [Google Scholar]
  6. CHIDSEY C. A., 3rd, FRITTS H. W., Jr, HARDEWIG A., RICHARDS D. W., COURNAND A. Fate of radioactive kryton (Kr85) introduced intravenously in man. J Appl Physiol. 1959 Jan;14(1):63–66. doi: 10.1152/jappl.1959.14.1.63. [DOI] [PubMed] [Google Scholar]
  7. COHEN L. S., ELLIOTT W. C., GORLIN R. MEASUREMENT OF MYOCARDIAL BLOOD FLOW USING KRYPTON 85. Am J Physiol. 1964 May;206:997–999. doi: 10.1152/ajplegacy.1964.206.5.997. [DOI] [PubMed] [Google Scholar]
  8. CONN H. L., Jr Equilibrium distribution of radioxenon in tissue: xenon-hemoglobin association curve. J Appl Physiol. 1961 Nov;16:1065–1070. doi: 10.1152/jappl.1961.16.6.1065. [DOI] [PubMed] [Google Scholar]
  9. Cannon P. J., Dell R. B., Dwyer E. M., Jr Regional myocardial perfusion rates in patient with coronary artery disease. J Clin Invest. 1972 Apr;51(4):978–994. doi: 10.1172/JCI106892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cannon P. J., Haft J. I., Johnson P. M. Visual assessment of regional myocardial perfusion utilizing radioactive xenon and scintillation photography. Circulation. 1969 Sep;40(3):277–288. doi: 10.1161/01.cir.40.3.277. [DOI] [PubMed] [Google Scholar]
  11. Cohen A., Zaleski E. J., Baleiron H., Stock T. B., Chiba C., Bing R. J. Measurement of coronary blood flow using rubidium-84 and the coincidence counting method. A critical analysis. Am J Cardiol. 1967 Apr;19(4):556–562. doi: 10.1016/0002-9149(67)90422-5. [DOI] [PubMed] [Google Scholar]
  12. Dilley R. B., Cannon J. A., Kattus A. A., MacAlpin R. N., Longmire W. P., Jr The treatment of coronary occlusive disease by endarterectomy. J Thorac Cardiovasc Surg. 1965 Oct;50(4):511–526. [PubMed] [Google Scholar]
  13. Domenech R. J., Hoffman J. I., Noble M. I., Saunders K. B., Henson J. R., Subijanto S. Total and regional coronary blood flow measured by radioactive microspheres in conscious and anesthetized dogs. Circ Res. 1969 Nov;25(5):581–596. doi: 10.1161/01.res.25.5.581. [DOI] [PubMed] [Google Scholar]
  14. Grant R. H., Keelan P., Kernohan R. J., Leonard J. C., Nancekievill L., Sinclair K. Multicenter trial of propranolol in angina pectoris. Am J Cardiol. 1966 Sep;18(3):361–365. doi: 10.1016/0002-9149(66)90054-3. [DOI] [PubMed] [Google Scholar]
  15. Green G. E., Stertzer S. H., Reppert E. H. Coronary arterial bypass grafts. Ann Thorac Surg. 1968 May;5(5):443–450. doi: 10.1016/s0003-4975(10)66377-1. [DOI] [PubMed] [Google Scholar]
  16. HERD J. A., HOLLENBERG M., THORBURN G. D., KOPALD H. H., BARGER A. C. Myocardial blood flow determined with krypton 85 in unanesthetized dogs. Am J Physiol. 1962 Jul;203:122–124. doi: 10.1152/ajplegacy.1962.203.1.122. [DOI] [PubMed] [Google Scholar]
  17. HOLLANDER W., MADOFF I. M., CHOBANIAN A. V. Local myocardial blood flow as indicated by the disappearance of Nal-131 from the heart muscle: studies at rest, during exercise, and following nitrite administration. J Pharmacol Exp Ther. 1963 Jan;139:53–59. [PubMed] [Google Scholar]
  18. Haddy F. J. Physiology and pharmacology of the coronary circulation and myocardium, particularly in relation to coronary artery disease. Am J Med. 1969 Aug;47(2):274–286. doi: 10.1016/0002-9343(69)90153-3. [DOI] [PubMed] [Google Scholar]
  19. KETY S. S. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev. 1951 Mar;3(1):1–41. [PubMed] [Google Scholar]
  20. Killip T., 3rd, Kimball J. T. Treatment of myocardial infarction in a coronary care unit. A two year experience with 250 patients. Am J Cardiol. 1967 Oct;20(4):457–464. doi: 10.1016/0002-9149(67)90023-9. [DOI] [PubMed] [Google Scholar]
  21. Klein M. D., Cohen L. S., Gorlin R. Krypton 85 myocardial blood flow: precordial scintillation versus coronary sinus sampling. Am J Physiol. 1965 Oct;209(4):705–710. doi: 10.1152/ajplegacy.1965.209.4.705. [DOI] [PubMed] [Google Scholar]
  22. Klocke F. J., Koberstein R. C., Pittman D. E., Bunnell I. L., Greene D. G., Rosing D. R. Effects of heterogeneous myocardial perfusion on coronary venous H2 desaturation curves and calculations of coronary flow. J Clin Invest. 1968 Dec;47(12):2711–2724. doi: 10.1172/JCI105954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LASSEN N. A. ASSESSMENT OF TISSUE RADIATION DOSE IN CLINICAL USE OF RADIOACTIVE INERT GASES, WITH EXAMPLES OF ABSORBED DOSES FROM 3-H2, 85-KR AND 133-XE. Minerva Nucl. 1964 Jul-Aug;8:211–217. [PubMed] [Google Scholar]
  24. LOVE W. D., BURCH G. E. A study in dogs of methods suitable for estimating the rate of myocardial uptake of Rb86 in man, and the effect of 1-norepinephrine and pitressin on Rb86 uptake. J Clin Invest. 1957 Mar;36(3):468–478. doi: 10.1172/JCI103444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. LOVE W. D., BURCH G. E. Differences in the rate of Rb86 uptake by several regions of the myocardium of control dogs and dogs receiving 1-norepinephrine or pitressin. J Clin Invest. 1957 Mar;36(3):479–484. doi: 10.1172/JCI103445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pitt A., Friesinger G. C., Ross R. S. Measurement of blood flow in the right and left coronary artery beds in humans and dogs using the 133Xenon technique. Cardiovasc Res. 1969 Jan;3(1):100–106. doi: 10.1093/cvr/3.1.100. [DOI] [PubMed] [Google Scholar]
  27. Proudfit W. L., Shirey E. K., Sones F. M., Jr Selective cine coronary arteriography. Correlation with clinical findings in 1,000 patients. Circulation. 1966 Jun;33(6):901–910. doi: 10.1161/01.cir.33.6.901. [DOI] [PubMed] [Google Scholar]
  28. ROSS R. S., UEDA K., LICHTLEN P. R., REES J. R. MEASUREMENT OF MYOCARDIAL BLOOD FLOW IN ANIMALS AND MAN BY SELECTIVE INJECTION OF RADIOACTIVE INERT GAS INTO THE CORONARY ARTERIES. Circ Res. 1964 Jul;15:28–41. doi: 10.1161/01.res.15.1.28. [DOI] [PubMed] [Google Scholar]
  29. SARNOFF S. J., BRAUNWALD E., WELCH G. H., Jr, CASE R. B., STAINSBY W. N., MACRUZ R. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am J Physiol. 1958 Jan;192(1):148–156. doi: 10.1152/ajplegacy.1957.192.1.148. [DOI] [PubMed] [Google Scholar]
  30. SONES F. M., Jr, SHIREY E. K. Cine coronary arteriography. Mod Concepts Cardiovasc Dis. 1962 Jul;31:735–738. [PubMed] [Google Scholar]
  31. Sullivan J. M., Taylor W. J., Elliott W. C., Gorlin R. Regional myocardial blood flow. J Clin Invest. 1967 Sep;46(9):1402–1412. doi: 10.1172/JCI105632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ter-Pogossian M. M., Eichling J. O., Davis D. O., Welch M. J. The measure in vivo of regional cerebral oxygen utilization by means of oxyhemoglobin labeled with radioactive oxygen-15. J Clin Invest. 1970 Feb;49(2):381–391. doi: 10.1172/JCI106247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. ZIERLER K. L. EQUATIONS FOR MEASURING BLOOD FLOW BY EXTERNAL MONITORING OF RADIOISOTOPES. Circ Res. 1965 Apr;16:309–321. doi: 10.1161/01.res.16.4.309. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES