Abstract
Thyroxine (T4) and triiodothyronine (T9) are rapidly degraded by a purified preparation of myeloperoxidase (MPO) and H2O2 with the formation of iodide and material which remains at the origin on paper chromatography. Deiodination by MPO and H2O2 occurs more readily at pH 7.0 than at pH 5.0 in contrast to iodination by this system which is known to occur more readily at pH 5.0 than at pH 7.0. Degradation is inhibited by azide, cyanide, ascorbic acid, and propylthiouracil. Methimazole stimulates deiodination by MPO and H2O2 but inhibits this reaction when MPO is replaced by lactoperoxidase or horseradish peroxidase.
Intact human leukocytes, in the resting state, degrade T4 and T3 slowly: degradation, however, is increased markedly during phagocytosis of preopsonized particles. Serum inhibits this reaction. T3 can be detected as a minor product of T4 degradation. Proteolytic digestion of the reaction products increases the recovery of monoiodotyrosine. The fixation of iodine in the cytoplasm of leukocytes which contain ingested bacteria was detected radioautographically. Chronic granulomatous disease leukocytes, which are deficient in H2O2 formation, degrade T4 and T3 poorly during phagocytosis. MPO-deficient leukocytes degrade the thyroid hormones at a slower rate than do normal leukocytes although considerable degradation is still observed. Azide, cyanide, ascorbic acid, and propylthiouracil which inhibit certain peroxidasecatalyzed reactions inhibit degradation by normal leukocytes; however, inhibition is incomplete. Formation of iodinated origin material is inhibited to a greater degree by azide, cyanide, and propylthiouracil than is deiodination. Methimazole inhibits the formation of iodinated origin material by both normal and MPO-deficient leukocytes. However, deiodination by normal leukocytes is stimulated and that of MPO-deficient leukocytes is unaffected by methimazole. Hypoxia inhibits the degradation of T4 and T3 by untreated normal or MPO-deficient leukocytes and by normal leukocytes treated with azide or methimazole.
These data suggest that both MPO-dependent and MPO-independent systems are involved in the degradation of T4 and T3 by phagocytosing leukocytes. The role of leukocytic degradation of T4 and T3 in thyroid hormone economy and in leukocytic microbicidal activity is considered.
Full text
PDF












Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelberg H. M., Siemsen J. K., Jung R. C., Nicoloff J. T. Scintigraphic detection of pulmonary bacterial infections with labeled thyroid hormones and pertechnetate. Radiology. 1971 Apr;99(1):141–146. doi: 10.1148/99.1.141. [DOI] [PubMed] [Google Scholar]
- BJORKSTEN F., GRASBECK R., KARLSSON R., LAMBERG B. A. Peroxidase-catalysed iodination and deiodination of iodotyrosines and iodothyronines. Ann Med Exp Biol Fenn. 1963;41:156–165. [PubMed] [Google Scholar]
- Baehner R. L., Karnovsky M. J., Karnovsky M. L. Degranulation of leukocytes in chronic granulomatous disease. J Clin Invest. 1969 Jan;48(1):187–192. doi: 10.1172/JCI105967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baggiolini M., Hirsch J. G., De Duve C. Resolution of granules from rabbit heterophil leukocytes into distinct populations by zonal sedimentation. J Cell Biol. 1969 Feb;40(2):529–541. doi: 10.1083/jcb.40.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bainton D. F., Farquhar M. G. Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. II. Cytochemistry and electron microscopy of bone marrow cells. J Cell Biol. 1968 Nov;39(2):299–317. doi: 10.1083/jcb.39.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ballantine J. J., Oliner L. Failure of methimazole to affect peripheral thyroid indices in man. Proc Soc Exp Biol Med. 1968 Feb;127(2):388–391. doi: 10.3181/00379727-127-32697. [DOI] [PubMed] [Google Scholar]
- Belding M. E., Klebanoff S. J., Ray C. G. Peroxidase-mediated virucidal systems. Science. 1970 Jan 9;167(3915):195–196. doi: 10.1126/science.167.3915.195. [DOI] [PubMed] [Google Scholar]
- DeRubertis F. R., Woeber K. A. Evidence for enhanced cellular uptake and binding of thyroxine in vivo during acute infection with Diplococcus pneumoniae. J Clin Invest. 1972 Apr;51(4):788–795. doi: 10.1172/JCI106873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunn W. B., Hardin J. H., Spicer S. S. Ultrastructural localization of myeloperoxidase in human neutrophil and rabbit heterophil and eosinophil leukocytes. Blood. 1968 Dec;32(6):935–944. [PubMed] [Google Scholar]
- GALTON V. A., INGBAR S. H. A photoactivated flavin-induced degradation of thyroxine and related phenols. Endocrinology. 1962 Feb;70:210–220. doi: 10.1210/endo-70-2-210. [DOI] [PubMed] [Google Scholar]
- GALTON V. A., INGBAR S. H. ROLE OF PEROXIDASE AND CATALASE IN THE PHYSIOLOGICAL DEIODINATION OF THYROXINE. Endocrinology. 1963 Nov;73:596–605. doi: 10.1210/endo-73-5-596. [DOI] [PubMed] [Google Scholar]
- GALTON V. A., INGBAR S. H. The mechanism of protein iodination during the metabolism of thyroid hormones by peripheral tissues. Endocrinology. 1961 Jul;69:30–38. doi: 10.1210/endo-69-1-30. [DOI] [PubMed] [Google Scholar]
- Gregerman R. I., Solomon N. Acceleration of thyroxine and triiodothyronine turnover during bacterial pulmonary infections and fever: implications for the functional state of the thyroid during stress and in senescence. J Clin Endocrinol Metab. 1967 Jan;27(1):93–105. doi: 10.1210/jcem-27-1-93. [DOI] [PubMed] [Google Scholar]
- HAUSMANN W., KARLISH A. J. Acute myxoedema precipitated by pneumonia. Report of five cases. Br Med J. 1961 Oct 21;2(5259):1063–1065. doi: 10.1136/bmj.2.5259.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HERSHMAN J. M. EFFECT OF 5- AND 6-PROPYLTHIOURACIL ON THE METABOLISM OF L-THYROXINE IN MAN. J Clin Endocrinol Metab. 1964 Feb;24:173–179. doi: 10.1210/jcem-24-2-173. [DOI] [PubMed] [Google Scholar]
- HERSHMAN J. M., VAN MIDDLESWORTH L. Effect of antithyroid compounds on the deiodination of thyroxine in the rat. Endocrinology. 1962 Jul;71:94–100. doi: 10.1210/endo-71-1-94. [DOI] [PubMed] [Google Scholar]
- Holmes B., Page A. R., Good R. A. Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest. 1967 Sep;46(9):1422–1432. doi: 10.1172/JCI105634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs A. A., Low I. E., Paul B. B., Strauss R. R., Sbarra A. J. Mycoplasmacidal activity of peroxidase-H2O2-halide systems. Infect Immun. 1972 Jan;5(1):127–131. doi: 10.1128/iai.5.1.127-131.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KLEBANOFF S. J. INACTIVATION OF ESTROGEN BY RAT UTERINE PREPARATIONS. Endocrinology. 1965 Feb;76:301–311. doi: 10.1210/endo-76-2-301. [DOI] [PubMed] [Google Scholar]
- KLEBANOFF S. J., LUEBKE R. G. THE ANTILACTOBACILLUS SYSTEM OF SALIVA. ROLE OF SALIVARY PEROXIDASE. Proc Soc Exp Biol Med. 1965 Feb;118:483–486. doi: 10.3181/00379727-118-29882. [DOI] [PubMed] [Google Scholar]
- Klebanoff S. J., Clem W. H., Luebke R. G. The peroxidase-thiocyanate-hydrogen peroxide antimicrobial system. Biochim Biophys Acta. 1966 Mar 28;117(1):63–72. doi: 10.1016/0304-4165(66)90152-8. [DOI] [PubMed] [Google Scholar]
- Klebanoff S. J., Hamon C. B. Role of myeloperoxidase-mediated antimicrobial systems in intact leukocytes. J Reticuloendothel Soc. 1972 Aug;12(2):170–196. [PubMed] [Google Scholar]
- Klebanoff S. J. Iodination of bacteria: a bactericidal mechanism. J Exp Med. 1967 Dec 1;126(6):1063–1078. doi: 10.1084/jem.126.6.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klebanoff S. J. Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol. 1968 Jun;95(6):2131–2138. doi: 10.1128/jb.95.6.2131-2138.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klebanoff S. J. Myeloperoxidase: contribution to the microbicidal activity of intact leukocytes. Science. 1970 Sep 11;169(3950):1095–1097. doi: 10.1126/science.169.3950.1095. [DOI] [PubMed] [Google Scholar]
- Klebanoff S. J., Pincus S. H. Hydrogen peroxide utilization in myeloperoxidase-deficient leukocytes: a possible microbicidal control mechanism. J Clin Invest. 1971 Oct;50(10):2226–2229. doi: 10.1172/JCI106718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klebanoff S. J., White L. R. Iodination defect in the leukocytes of a patient with chronic granulomatous disease of childhood. N Engl J Med. 1969 Feb 27;280(9):460–466. doi: 10.1056/NEJM196902272800902. [DOI] [PubMed] [Google Scholar]
- Lehrer R. I. Antifungal effects of peroxidase systems. J Bacteriol. 1969 Aug;99(2):361–365. doi: 10.1128/jb.99.2.361-365.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehrer R. I., Cline M. J. Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J Clin Invest. 1969 Aug;48(8):1478–1488. doi: 10.1172/JCI106114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAYRARGUE-KODJA A., BOUCHILLOUX S., LISSITZKY S. Action d'une peroxydase végétale sur divers amino-acides phénoliques: tyrosine, thyronine, et certains de leurs dérivés iodés ou hydroxylés. Bull Soc Chim Biol (Paris) 1958;40(5-6):815–831. [PubMed] [Google Scholar]
- Mandell G. L., Hook E. W. Leukocyte bactericidal activity in chronic granulomatous disease: correlation of bacterial hydrogen peroxide production and susceptibility to intracellular killing. J Bacteriol. 1969 Oct;100(1):531–532. doi: 10.1128/jb.100.1.531-532.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McRipley R. J., Sbarra A. J. Role of the phagocyte in host-parasite interactions. XII. Hydrogen peroxide-myeloperoxidase bactericidal system in the phagocyte. J Bacteriol. 1967 Nov;94(5):1425–1430. doi: 10.1128/jb.94.5.1425-1430.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicoloff J. T. A new method for the measurement of acute alterations in thyroxine deiodination rate in man. J Clin Invest. 1970 Feb;49(2):267–273. doi: 10.1172/JCI106236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pincus S. H., Klebanoff S. J. Quantitative leukocyte iodination. N Engl J Med. 1971 Apr 8;284(14):744–750. doi: 10.1056/NEJM197104082841402. [DOI] [PubMed] [Google Scholar]
- Quie P. G., White J. G., Holmes B., Good R. A. In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood. J Clin Invest. 1967 Apr;46(4):668–679. doi: 10.1172/JCI105568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROCHE J., HAMOLSKY M. W., MICHEL R., LOTZ H. [On the fixation of thyroid hormones and their acetic derivatives by horse leukocytes in vitro]. C R Hebd Seances Acad Sci. 1962 Aug 20;255:1278–1280. [PubMed] [Google Scholar]
- Reinwein D., Durrer H. A. Deiodination of thyroxine by erythrocytes and leukocytes from euthyroid and hyperthyroid patients. Horm Metab Res. 1969 Jul;1(4):241–245. doi: 10.1055/s-0028-1095142. [DOI] [PubMed] [Google Scholar]
- Reinwein D., Rall J. E., Durrer H. A. Deiodination of thyroxine by a hydrogen peroxide generating system. Endocrinology. 1968 Nov;83(5):1023–1028. doi: 10.1210/endo-83-5-1023. [DOI] [PubMed] [Google Scholar]
- Reinwein D., Rall J. E. Nonenzymatic deiodination of thyroid hormones by flavin mononucleotide and light. J Biol Chem. 1966 Apr 10;241(7):1636–1643. [PubMed] [Google Scholar]
- Reinwein D., Rall J. E. Nonenzymatic deiodination of thyroxine by hydrogen peroxide. Endocrinology. 1966 Jun;78(6):1248–1251. doi: 10.1210/endo-78-6-1248. [DOI] [PubMed] [Google Scholar]
- SIEGEL E., SACHS B. A. IN VITRO LEUKOCYTE UPTAKE OF 131-I LABELED IODIDE, THYROXINE AND TRIIODOTHYRONINE, AND ITS RELATION TO THYROID FUNCTION. J Clin Endocrinol Metab. 1964 Apr;24:313–318. doi: 10.1210/jcem-24-4-313. [DOI] [PubMed] [Google Scholar]
- Schultz J., Corlin R., Oddi F., Kaminker K., Jones W. Myeloperoxidase of the leucocyte of normal human blood. 3. Isolation of the peroxidase granule. Arch Biochem Biophys. 1965 Jul;111(1):73–79. doi: 10.1016/0003-9861(65)90324-3. [DOI] [PubMed] [Google Scholar]
- Sterling K., Brenner M. A., Newman E. S. Conversion of thyroxine to triiodothyronine in normal human subjects. Science. 1970 Sep 11;169(3950):1099–1100. doi: 10.1126/science.169.3950.1099. [DOI] [PubMed] [Google Scholar]
- Stolc V. Stimulation of iodoproteins and thyroxine formation in human leukocytes by phagocytosis. Biochem Biophys Res Commun. 1971 Oct 1;45(1):159–166. doi: 10.1016/0006-291x(71)90064-7. [DOI] [PubMed] [Google Scholar]
- Undritz E. Die Alius-Grignaschi-Anomalie: Der erblich-konstitutionelle Peroxydasedefekt der Neutrophilen und Monozyten. Blut. 1966 Dec;14(3):129–136. doi: 10.1007/BF01631534. [DOI] [PubMed] [Google Scholar]
- VAN MIDDLESWORTH L., JONES S. L. Interference with deiodination of some thyroxine analogues in the rat. Endocrinology. 1961 Dec;69:1085–1087. doi: 10.1210/endo-69-6-1085. [DOI] [PubMed] [Google Scholar]
- VANARSDEL P. P., Jr, WILLIAMS R. H. Effect of propylthiouracil on degradation of I 131-labeled thyroxine and triiodothyronine. Am J Physiol. 1956 Sep;186(3):440–444. doi: 10.1152/ajplegacy.1956.186.3.440. [DOI] [PubMed] [Google Scholar]
- WILSON D. L., MANERY J. F. The permeability of rabbit leucocytes to sodium, potassium and chloride. J Cell Physiol. 1949 Dec;34(3):493–519. doi: 10.1002/jcp.1030340312. [DOI] [PubMed] [Google Scholar]
- Woeber K. A. Alterations in thyroid hormone economy during acute infection with Diplococcus pneumoniae in the rhesus monkey. J Clin Invest. 1971 Feb;50(2):378–387. doi: 10.1172/JCI106505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woeber K. A., Doherty G. F., Ingbar S. H. Stimulation by phagocytosis of the deiodination of L-thyroxine in human leukocytes. Science. 1972 Jun 2;176(4038):1039–1041. doi: 10.1126/science.176.4038.1039. [DOI] [PubMed] [Google Scholar]