Abstract
We studied the dynamics of the Heat Shock Response (HSR) mechanism, and the persistence of a injury-protected state in the cell following the shocks, known as thermotolerance. A series of double shock experiments were performed on Chinese Hamster Ovary (CHO) cells, tracking the dynamics of some components of HSR pathway (the Hsp70 protein level and Hsp70 mRNA transcription rate). The main features of HSR dynamics were well reproduced by a simplified model of the chemical reaction pathways governing the HSR. In particular, the thermotolerance phenomenon could be well characterized by introducing a shock-dependent switch in mRNA halflife, that can be interpreted as a sort of primitive memory at the mRNA level.
Key words: heat shock response, habituation, thermotolerance, chemical reactions & chemical kinetics, analytical & numerical analysis, proteins-DNA
References
- 1.Ritossa F. New Puffing Pattern Induced by Temperature Shock and DNP in Drosophila. Experientia. 1962;18:571–573. doi: 10.1007/BF02172188. [DOI] [Google Scholar]
- 2.Tissieres A., Mitchell H.K., Tracy U.M. Protein Synthesis in Salivary Glands of D. melanogaster: Relation to Chromosome Puffs. J. Mol. Biol. 1974;84:389–398. doi: 10.1016/0022-2836(74)90447-1. [DOI] [PubMed] [Google Scholar]
- 3.Morimoto R.I. Regulation of the Heat Shock Transcriptional Response: Cross Talk Between a Family of Heat Shock Factors, Molecular Chaperones, and Negative Regulators. Genes Dev. 1998;12:3788. doi: 10.1101/gad.12.24.3788. [DOI] [PubMed] [Google Scholar]
- 4.Kiang J.G., Tsokos G.C. Heat Shock Protein 70 kDa: Molecular Biology, Biochemistry, and Physiology. Pharmacol. Ther. 1998;80(2):183–201. doi: 10.1016/S0163-7258(98)00028-X. [DOI] [PubMed] [Google Scholar]
- 5.de Pomerai D., Daniells C., David H., Allan J., Duce I., Mutwakil M., Thomas D., Sewell P., Tattersall J., Jones D., Candido P.Non-Thermal Heat-Shock Response to Microwaves Nature 2000405417. 10.1038/350131442000Natur.405..417D [DOI] [PubMed] [Google Scholar]
- 6.Arnvig K.B., Pedersen S., Sneppen K. Thermodynamics of Heat Shock Response. (cond- mat/9912402) Phys. Rev. Lett. 2000;84:13:3005. doi: 10.1103/PhysRevLett.84.3005. [DOI] [PubMed] [Google Scholar]
- 7.Theodorakis N.G., Drujan D., De Maio A. Thermotolerant Cells Show an Attenuated Expression of Hsp70 After Heat Shock. J. Biol. Chem. 1999;274:17:12081. doi: 10.1074/jbc.274.17.12081. [DOI] [PubMed] [Google Scholar]
- 8.Bonner J.J., Carlson T., Fackenthal D.L., Paddock D., Storey K., Lea K. Complex Regulation of the Yeast Heat Shock Transcription Factor. Mol. Biol. Cell. 2000;11(5):1739–1751. doi: 10.1091/mbc.11.5.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Morimoto, R.I., Tissières, A. and Georgopoulos, C. (eds.): The Biology of Heat Shock Proteins and Molecular Chaperones, Cold Spring Harbor Laboratory Press, 1994.
- 10.Kiang J.G., Tsokos G.C. Heat Shock Protein 70 kDa: Molecular Biology, Biochemistry, and Physiology. Pharmacol. Ther. 1998;80(2):183. doi: 10.1016/S0163-7258(98)00028-X. [DOI] [PubMed] [Google Scholar]
- 11.Theodorakis N.G., Morimoto R.I. Posttranscriptional Regulation of Hsp70 Expression in Human Cells: Effects of Heat Shock, Inhibition of Protein Synthesis, and Adenovirus Infection on Translation and mRNA Stability. Mol. Cell. Biol. 1987;7(12):4357. doi: 10.1128/mcb.7.12.4357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Li, D. et al.: Eur. J. Biochem. 231(2) (1995), 454. [DOI] [PubMed]
- 13.Barbieri M. The Organic Codes. Cambridge: Cambridge Univ. Press; 2003. [Google Scholar]
- 14.Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J. Molecular Biology of the Cell III ed. New York: Garland; 1994. [Google Scholar]
- 15.Hartl, F.U. and Hayer-Hartl, M.: Molecular Chaperones in the Cytosol: From Nascent Chain to Folded Protein, Science295 (2002), 1852–1858, DOI: 10.1126/science.1068408 [DOI] [PubMed]