Abstract
Human lymphocytes from normal peripheral blood, thymus, spleen, thoracic duct, and peripheral lymphocytes from patients with chronic lymphatic leukemia were studied for complement receptor sites (CRL), surface immunoglobulin (SIg), and for the ability to form rosettes with sheep erythrocytes (TRFC). The two B cell markers (CRL and SIg) were found to be in overlapping, but not totally identical populations, whereas cells that were able to form rosettes were found in a totally unrelated population of lymphocytes; TRFC is therefore probably a reliable marker for T cells. In peripheral blood 24% of lymphocytes had SIg, but only half of these were also CRL. Almost all of the non-SIg peripheral blood lymphocytes were TRFC. In the spleen and thoracic duct only a few lymphocytes were observed that had SIg and were not CRL. On the other hand, in two of three spleens studied 10-20% of cells were CRL that did not have SIg. In the thoracic duct all non-CRL that did not have SIg. In the thoracic duct all non-CRL, non-SIg cells were TRFC. In chronic lymphatic leukemia three findings were made: (a) The presence or absence of CRL was independent of the presence or absence of SIg so that in individuals whose cells were non-SIg. CRL were usually plentiful. (b) Leukemic cells were essentially negative for TRFC. (c) Leukemic cells reacted poorly with human C3 compared to mouse C3, EACmo detecting up to 20-fold more CRL than EAChu. This latter finding was in sharp contrast to normal CRL that reacted somewhat preferentially with EAChu. These data suggest that altered surface Ig receptors and complement receptors are present in chronic lymphatic leukemic cells. Since the cells obtained from all leukemic patients tested in this study had either the complement receptor or surface immunoglobulin in a high percentage of their cells and were essentially negative for TRFC, it is strongly suggested that leukemic lymphocytes are of B cell origin. The finding of lymphocytes with only one of the two B cell markers suggests that these markers are not uniformly present on all B cells and that depending on the source, one or the other may be deficient.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Basten A., Miller J. F., Sprent J., Pye J. A receptor for antibody on B lymphocytes. I. Method of detection and functional significance. J Exp Med. 1972 Mar 1;135(3):610–626. doi: 10.1084/jem.135.3.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bianco C., Nussenzweig V. Theta-bearing and complement-receptor lymphocytes are distinct populations of cells. Science. 1971 Jul 9;173(3992):154–156. doi: 10.1126/science.173.3992.154. [DOI] [PubMed] [Google Scholar]
- Bianco C., Patrick R., Nussenzweig V. A population of lymphocytes bearing a membrane receptor for antigen-antibody-complement complexes. I. Separation and characterization. J Exp Med. 1970 Oct 1;132(4):702–720. doi: 10.1084/jem.132.4.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brain P., Gordon J., Willetts W. A. Rosette formation by peripheral lymphocytes. Clin Exp Immunol. 1970 May;6(5):681–688. [PMC free article] [PubMed] [Google Scholar]
- Coombs R. R., Gurner B. W., Wilson A. B., Holm G., Lindgren B. Rosette-formation between human lymphocytes and sheep red cells not involving immunoglobulin receptors. Int Arch Allergy Appl Immunol. 1970;39(5-6):658–663. doi: 10.1159/000230390. [DOI] [PubMed] [Google Scholar]
- Dukor P., Bianco C., Nussenzweig V. Bone marrow origin of complement-receptor lymphocytes. Eur J Immunol. 1971 Dec;1(6):491–494. doi: 10.1002/eji.1830010617. [DOI] [PubMed] [Google Scholar]
- Fröland S. S. Binding of sheep erythrocytes to human lymphocytes. A probable marker of T lymphocytes. Scand J Immunol. 1972;1(3):269–280. doi: 10.1111/j.1365-3083.1972.tb01818.x. [DOI] [PubMed] [Google Scholar]
- Grey H. M., Colón S., Campbell P., Rabellino E. Immunoglobulins on the surface of lymphocytes. V. Quantitative studies on the question of whether immunoglobulins are associated with T cells in the mouse. J Immunol. 1972 Oct;109(4):776–783. [PubMed] [Google Scholar]
- Grey H. M., Rabellino E., Pirofsky B. Immunoglobulins on the surface of lymphocytes. IV. Distribution in hypogammaglobulinemia, cellular immune deficiency, and chronic lymphatic leukemia. J Clin Invest. 1971 Nov;50(11):2368–2375. doi: 10.1172/JCI106735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris R., Ukaejiofo E. O. Rapid preparation of lymphocytes for tissue-typing. Lancet. 1969 Aug 9;2(7615):327–327. doi: 10.1016/s0140-6736(69)90096-8. [DOI] [PubMed] [Google Scholar]
- Jondal M., Holm G., Wigzell H. Surface markers on human T and B lymphocytes. I. A large population of lymphocytes forming nonimmune rosettes with sheep red blood cells. J Exp Med. 1972 Aug 1;136(2):207–215. doi: 10.1084/jem.136.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lay W. H., Mendes N. F., Bianco C., Nussenzweig V. Binding of sheep red blood cells to a large population of human lymphocytes. Nature. 1971 Apr 23;230(5295):531–532. doi: 10.1038/230531a0. [DOI] [PubMed] [Google Scholar]
- Michlmayr G., Huber H. Receptor sites for complement on certain human peripheral blood lymphocytes. J Immunol. 1970 Sep;105(3):670–676. [PubMed] [Google Scholar]
- Müllerèberhard H. J., Dalmasso A. P., Calcott M. A. The reaction mechanism of beta-1C-globulin (C'3) in immune hemolysis. J Exp Med. 1966 Jan 1;123(1):33–54. doi: 10.1084/jem.123.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NILSSON U. R., MUELLER-EBERHARD H. J. ISOLATION OF BETA IF-GLOBULIN FROM HUMAN SERUM AND ITS CHARACTERIZATION AS THE FIFTH COMPONENT OF COMPLEMENT. J Exp Med. 1965 Aug 1;122:277–298. doi: 10.1084/jem.122.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NISHIOKA K., LINSCOTT W. D. COMPONENTS OF GUINEA PIG COMPLEMENT. I. SEPARATION OF A SERUM FRACTION ESSENTIAL FOR IMMUNE HEMOLYSIS AND IMMUNE ADHERENCE. J Exp Med. 1963 Nov 1;118:767–793. doi: 10.1084/jem.118.5.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishioka K. Complement and tumor immunology. Adv Cancer Res. 1971;14:231–293. doi: 10.1016/s0065-230x(08)60522-9. [DOI] [PubMed] [Google Scholar]
- Pincus S., Bianco C., Nussenzweig V. Increased proportion of complement-receptor lymphocytes in the peripheral blood of patients with chronic lymphocytic leukemia. Blood. 1972 Sep;40(3):303–310. [PubMed] [Google Scholar]
- Polley M. J., Müller-Eberhard H. J. Enharncement of the hemolytic activity of the second component of human complement by oxidation. J Exp Med. 1967 Dec 1;126(6):1013–1025. doi: 10.1084/jem.126.6.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polley M. J., Müller-Eberhard H. J. The second component of human complement: its isolation, fragmentation by C'1 esterase, and incorporation into C'3 convertase. J Exp Med. 1968 Sep 1;128(3):533–551. doi: 10.1084/jem.128.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preud'homme J. L., Klein M., Verroust P., Seligmann M. Immunoglobulines monoclonales de membrane dans les leucémies lymphoïdes chroniques. Rev Eur Etud Clin Biol. 1971 Dec;16(10):1025–1031. [PubMed] [Google Scholar]
- Rabellino E., Colon S., Grey H. M., Unanue E. R. Immunoglobulins on the surface of lymphocytes. I. Distribution and quantitation. J Exp Med. 1971 Jan 1;133(1):156–167. doi: 10.1084/jem.133.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raff M. C., Sternberg M., Taylor R. B. Immunoglobulin determinants on the surface of mouse lymphoid cells. Nature. 1970 Feb 7;225(5232):553–554. doi: 10.1038/225553a0. [DOI] [PubMed] [Google Scholar]
- Shevach E. M., Herberman R., Frank M. M., Green I. Receptors for complement and immunoglobulin on human leukemic cells and human lymphoblastoid cell lines. J Clin Invest. 1972 Aug;51(8):1933–1938. doi: 10.1172/JCI106999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Unanue E. R., Grey H. M., Rabellino E., Campbell P., Schmidtke J. Immunoglobulins on the surface of lymphocytes. II. The bone marrow as the main source of lymphocytes with detectable surface-bound immunoglobulin. J Exp Med. 1971 Jun 1;133(6):1188–1198. doi: 10.1084/jem.133.6.1188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wybran J., Fudenberg H. H. Rosette formation, a test for cellular immunity. Trans Assoc Am Physicians. 1971;84:239–247. [PubMed] [Google Scholar]
