Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1973 Feb;52(2):414–421. doi: 10.1172/JCI107198

Alterations in Distribution of Blood Flow to the Lung's Diffusion Surfaces During Exercise

Carroll E Cross 1,2,3,4,5, Henry Gong Jr 1,2,3,4,5, Cornelius J Kurpershoek 1,2,3,4,5, Jerry R Gillespie 1,2,3,4,5, Richard W Hyde 1,2,3,4,5
PMCID: PMC302271  PMID: 4683880

Abstract

We measured simultaneously, by single breath methods, pulmonary capillary blood flow (Q̇c), carbon monoxide diffusing capacity (DLCO), and isotopic oxygen (18O18O) diffusing capacity (DL18O2) in five normal males during conditions of rest and moderate exercise at mixed venous O2 tensions (PO2 33-44 mm Hg). During moderate exercise at a work load of 100 W. pulmonary capillary blood flow increased from 6.9±1.5 to 12.9±3.4 min-1 and DL18O2 increased from 25±4 to 43±3 ml·min-1·mm Hg-1, whereas DLCO showed no significant change (45±5 to 49±10 ml·min-1·mm Hg-1). DL18O2 increased proportionally to Q̇c (r = 0.74), where DLCO did not (r = 0.08). The greater increase in DL18O2 during exercise can be explained by a more homogeneous diffusion/perfusion (DLO2/Q̇c) distribution in the individual respiratory exchange units during exercise. This improved distribution of DLO2/Q̇c acts to help prevent an increase in alveolar-arterial O2 tension difference from developing despite the decrease in pulmonary erythrocyte transit times that occur during exercise. The insignificant rise in DLCO with exercise under these hypoxic breathholding conditions may result from pulmonary vasomotor responses to short-term hypoxia or from relative insensitivity of DLCO to moderate levels of exercise.

Full text

PDF
414

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arndt H., King T. K., Briscoe W. A. Diffusing capacities and ventilation: perfusion ratios in patients with the clinical syndrome of alveolar capillary block. J Clin Invest. 1970 Feb;49(2):408–422. doi: 10.1172/JCI106250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BLAKEMORE W. S., FORSTER R. E., MORTON J. W., OGILVIE C. M. A standardized breath holding technique for the clinical measurement of the diffusing capacity of the lung for carbon monoxide. J Clin Invest. 1957 Jan;36(1 Pt 1):1–17. doi: 10.1172/JCI103402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Butler C., 2nd, Kleinerman J. Capillary density: alveolar diameter, a morphometric approach to ventilation and perfusion. Am Rev Respir Dis. 1970 Dec;102(6):886–894. doi: 10.1164/arrd.1970.102.6.886. [DOI] [PubMed] [Google Scholar]
  4. COHN J. E., CARROLL D. G., ARMSTRONG B. W., SHEPARD R. H., RILEY R. L. Maximal diffusing capacity of the lung in normal male subjects of different ages. J Appl Physiol. 1954 Apr;6(10):588–597. doi: 10.1152/jappl.1954.6.10.588. [DOI] [PubMed] [Google Scholar]
  5. Chinet A., Micheli J. L., Haab P. Inhomogeneity effects on O 2 and CO pulmonary diffusing capacity estimates by steady-state methods. Theory. Respir Physiol. 1971 Oct;13(1):1–22. doi: 10.1016/0034-5687(71)90061-2. [DOI] [PubMed] [Google Scholar]
  6. Cohen R., Overfield E. M., Kylstra J. A. Diffusion component of alveolar-arterial oxygen pressure difference in man. J Appl Physiol. 1971 Aug;31(2):223–226. doi: 10.1152/jappl.1971.31.2.223. [DOI] [PubMed] [Google Scholar]
  7. Crandall E. D., Flumerfelt R. W. Effect of time-varying blood flow on oxygen uptake in the pulmonary capillaries. J Appl Physiol. 1967 Dec;23(6):944–953. doi: 10.1152/jappl.1967.23.6.944. [DOI] [PubMed] [Google Scholar]
  8. Cross C. E., Packer B. S., Altman M., Gee J. B., Murdaugh H. V., Jr, Robin E. D. The determination of total body exchangeable O2 stores. J Clin Invest. 1968 Oct;47(10):2402–2410. doi: 10.1172/JCI105923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Daly W. J. Pulmonary diffusing capacity for carbon monoxide and topography of perfusion during changes in alveolar pressure in man. Am Rev Respir Dis. 1969 Apr;99(4):548–553. doi: 10.1164/arrd.1969.99.4P1.548. [DOI] [PubMed] [Google Scholar]
  10. Dawson A. Regional pulmonary blood flow in sitting and supine man during and after acute hypoxia. J Clin Invest. 1969 Feb;48(2):301–310. doi: 10.1172/JCI105986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dugard A., Naimark A. Effect of hypoxia on distribution of pulmonary blood flow. J Appl Physiol. 1967 Nov;23(5):663–671. doi: 10.1152/jappl.1967.23.5.663. [DOI] [PubMed] [Google Scholar]
  12. FORSTER R. E. Exchange of gases between alveolar air and pulmonary capillary blood: pulmonary diffusing capacity. Physiol Rev. 1957 Oct;37(4):391–452. doi: 10.1152/physrev.1957.37.4.391. [DOI] [PubMed] [Google Scholar]
  13. Glazier J. B., Hughes J. M., Maloney J. E., West J. B. Vertical gradient of alveolar size in lungs of dogs frozen intact. J Appl Physiol. 1967 Nov;23(5):694–705. doi: 10.1152/jappl.1967.23.5.694. [DOI] [PubMed] [Google Scholar]
  14. HESSER C. M., MATELL G. EFFECT OF LIGHT AND MODERATE EXERCISE ON ALVEOLAR-ARTERIAL O-2 TENSION DIFFERENCE IN MAN. Acta Physiol Scand. 1965 Mar;63:247–256. doi: 10.1111/j.1748-1716.1965.tb04064.x. [DOI] [PubMed] [Google Scholar]
  15. Hatzfeld C., Wiener F., Briscoe W. A. Effects of uneven ventilation-diffusion ratios on pulmonary diffusing capacity in disease. J Appl Physiol. 1967 Jul;23(1):1–10. doi: 10.1152/jappl.1967.23.1.1. [DOI] [PubMed] [Google Scholar]
  16. Holland R. A. Rate at which CO replaces O2 from O2Hb in red cells of different species. Respir Physiol. 1969 Jun;7(1):43–63. doi: 10.1016/0034-5687(69)90068-1. [DOI] [PubMed] [Google Scholar]
  17. Hyde R. W., Forster R. E., Power G. G., Nairn J., Rynes R. Measurement of O2 diffusing capacity of the lungs with a stable O2 isotope. J Clin Invest. 1966 Jul;45(7):1178–1193. doi: 10.1172/JCI105424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hyde R. W., Rynes R., Power G. G., Nairn J. Determination of distribution of diffusing capacity in relation to blood flow in the human lung. J Clin Invest. 1967 Mar;46(3):463–474. doi: 10.1172/JCI105548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. JOHNSON R. L., Jr, SPICER W. S., BISHOP J. M., FORSTER R. E. Pulmonary capillary blood volume, flow and diffusing capacity during exercise. J Appl Physiol. 1960 Sep;15:893–902. doi: 10.1152/jappl.1960.15.5.893. [DOI] [PubMed] [Google Scholar]
  20. JOHNSON R. L., Jr, TAYLOR H. F., LAWSON W. H., Jr MAXIMAL DIFFUSING CAPACITY OF THE LUNG FOR CARBON MONOXIDE. J Clin Invest. 1965 Mar;44:349–355. doi: 10.1172/JCI105148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Johnson R. L., Jr, Miller J. M. Distribution of ventilation, blood flow, and gas transfer coefficients in the lung. J Appl Physiol. 1968 Jul;25(1):1–15. doi: 10.1152/jappl.1968.25.1.1. [DOI] [PubMed] [Google Scholar]
  22. Kolobow T., Zapol W. M., Sigman R. L., Pierce J. Partial cardiopulmonary bypass lasting up to seven days in alert lambs with membrane lung blood oxygenation. J Thorac Cardiovasc Surg. 1970 Dec;60(6):781–788. [PubMed] [Google Scholar]
  23. LEWIS B. M., LIN T. H., NOE F. E., KOMISARUK R. The measurement of pulmonary capillary blood volume and pulmonary membrane diffusing capacity in normal subjects; the effects of exercise and position. J Clin Invest. 1958 Jul;37(7):1061–1070. doi: 10.1172/JCI103687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lopez-Majano V. Influence of ventilation and transfer of gases on blood gases in pulmonary insufficiency. Respiration. 1970;27(4):329–344. doi: 10.1159/000192691. [DOI] [PubMed] [Google Scholar]
  25. Menkes H. A., Sera K., Rogers R. M., Hyde R. W., Forster R. E., 2nd, DuBois A. B. Pulsatile uptake of CO in the human lung. J Clin Invest. 1970 Feb;49(2):335–345. doi: 10.1172/JCI106242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miller J. M., Johnson R. L., Jr Effect of lung inflation on pulmonary diffusing capacity at rest and exercise. J Clin Invest. 1966 Apr;45(4):493–500. doi: 10.1172/JCI105363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. PIIPER J. Variations of ventilation and diffusing capacity to perfusion determining the alveolar-arterial O2 difference: theory. J Appl Physiol. 1961 May;16:507–510. doi: 10.1152/jappl.1961.16.3.507. [DOI] [PubMed] [Google Scholar]
  28. RILEY R. L., SHEPARD R. H., COHN J. E., CARROLL D. G., ARMSTRONG B. W. Maximal diffusing capacity of the lungs. J Appl Physiol. 1954 Apr;6(10):573–587. doi: 10.1152/jappl.1954.6.10.573. [DOI] [PubMed] [Google Scholar]
  29. ROUGHTON F. J., FORSTER R. E. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J Appl Physiol. 1957 Sep;11(2):290–302. doi: 10.1152/jappl.1957.11.2.290. [DOI] [PubMed] [Google Scholar]
  30. Read J. Stratification of ventilation and blood flow in the normal lung. J Appl Physiol. 1966 Sep;21(5):1521–1531. doi: 10.1152/jappl.1966.21.5.1521. [DOI] [PubMed] [Google Scholar]
  31. STAUB N. C. Alveolar-arterial oxygen tension gradient due to diffusion. J Appl Physiol. 1963 Jul;18:673–680. doi: 10.1152/jappl.1963.18.4.673. [DOI] [PubMed] [Google Scholar]
  32. STAUB N. C., BISHOP J. M., FORSTER R. E. Importance of diffusion and chemical reaction rates in O2 uptake in the lung. J Appl Physiol. 1962 Jan;17:21–27. doi: 10.1152/jappl.1962.17.1.21. [DOI] [PubMed] [Google Scholar]
  33. Schmidt W., Thews G., Schnabel K. H. Results of distribution analysis of ventilation, perfusion and O 2 diffusing capacity in the human lung: investigations in healthy subjects and in patients with obstructive lung diseases. Respiration. 1972;29(1):1–16. doi: 10.1159/000192846. [DOI] [PubMed] [Google Scholar]
  34. Warrell D. A., Evans J. W., Clarke R. O., Kingaby G. P., West J. B. Pattern of filling in the pulmonary capillary bed. J Appl Physiol. 1972 Mar;32(3):346–356. doi: 10.1152/jappl.1972.32.3.346. [DOI] [PubMed] [Google Scholar]
  35. West J. B., Maloney J. E., Castle B. L. Effect of stratified inequality of blood flow on gas exchange in liquid-filled lungs. J Appl Physiol. 1972 Mar;32(3):357–361. doi: 10.1152/jappl.1972.32.3.357. [DOI] [PubMed] [Google Scholar]
  36. Whipp B. J., Wasserman K. Alveolar-arterial gas tension differences during graded exercise. J Appl Physiol. 1969 Sep;27(3):361–365. doi: 10.1152/jappl.1969.27.3.361. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES