Abstract
Isolated preparations of portions of the canine intraventricular conducting system were studied by microelectrode techniques in order to determine the nature of transverse spread and longitudinal dissociation of impulses in bundle branches and false tendons. Driving stimuli were delivered to an eccentric location on normal conducting tissue, and the arrival times of the propagating impulses were mapped along the length and width of the bundle branch, or along the false tendon ipsilateral and contralateral to the site of stimulation. The difference between the arrival times on the two sides was found to decrease progressively as a function of distance from the site of stimulation, the data suggesting that transverse spread of impulses involves propagation through transverse crossover points between the longitudinally oriented conducting elements. Impulses originating eccentrically became uniformly conducted across the transverse axis of bundle branches 8-15 mm from the level of the stimulating electrode, and of false tendons 2-4 mm from the stimulus site. True longitudinal dissociation, producing conduction maps different from those representing normal transverse propagation, was seen occasionally in tissue having longitudinally oriented strips of abnormal tissue. However, early premature stimulation commonly resulted in longitudinal temporal dissociation of the premature responses, possibly due to functional block in the transverse crossover fibers.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson G. J., Greenspan K., Bandura J. P., Fisch C. Asynchrony of conduction within the canine specialized Purkinje fiber system. Circ Res. 1970 Nov;27(5):691–703. doi: 10.1161/01.res.27.5.691. [DOI] [PubMed] [Google Scholar]
- Bigger J. T., Jr, Bassett A. L., Hoffman B. F. Electrophysiological effects of diphenylhydantoin on canine purkinje fibers. Circ Res. 1968 Feb;22(2):221–236. doi: 10.1161/01.res.22.2.221. [DOI] [PubMed] [Google Scholar]
- Gelband H., Myerburg R. J., Ross S. M., Hoffman B. F. Digital monitoring of cardiac transmembrane potential characteristics. J Appl Physiol. 1970 Dec;29(6):894–895. doi: 10.1152/jappl.1970.29.6.894. [DOI] [PubMed] [Google Scholar]
- James T. N., Sherf L. Fine structure of the His bundle. Circulation. 1971 Jul;44(1):9–28. doi: 10.1161/01.cir.44.1.9. [DOI] [PubMed] [Google Scholar]
- Mendez C., Mueller W. J., Merideth J., Moe G. K. Interaction of transmembrane potentials in canine Purkinje fibers and at Purkinje fiber-muscle junctions. Circ Res. 1969 Mar;24(3):361–372. doi: 10.1161/01.res.24.3.361. [DOI] [PubMed] [Google Scholar]
- Moe G. K., Mendez C. The physiologic basis of reciprocal rhythm. Prog Cardiovasc Dis. 1966 Mar;8(5):461–482. doi: 10.1016/s0033-0620(66)80032-4. [DOI] [PubMed] [Google Scholar]
- Myerburg R. J., Gelband H., Hoffman B. F. Functional characteristics of the gating mechanism in the canine A-V conducting system. Circ Res. 1971 Feb;28(2):136–147. doi: 10.1161/01.res.28.2.136. [DOI] [PubMed] [Google Scholar]
- Myerburg R. J., Nilsson K., Gelband H. Physiology of canine intraventricular conduction and endocardial excitation. Circ Res. 1972 Feb;30(2):217–243. doi: 10.1161/01.res.30.2.217. [DOI] [PubMed] [Google Scholar]
- Myerburg R. J., Nilsson K., Zoble R. G. Relationship of surface electrogram recordings to activity in the underlying specialized conducting tissue. Circulation. 1972 Feb;45(2):420–432. doi: 10.1161/01.cir.45.2.420. [DOI] [PubMed] [Google Scholar]
- Myerburg R. J., Stewart J. W., Hoffman B. F. Electrophysiological propertiesf the canine peripheral A-V conducting system. Circ Res. 1970 Mar;26(3):361–378. doi: 10.1161/01.res.26.3.361. [DOI] [PubMed] [Google Scholar]
- Myerburg R. J., Stewart J. W., Ross S. M., Hoffman B. F. On-line measurement of duration of cardiac action potentials and refractory periods. J Appl Physiol. 1970 Jan;28(1):92–93. doi: 10.1152/jappl.1970.28.1.92. [DOI] [PubMed] [Google Scholar]
- Schamroth L., Yoshonis K. F. Mechanisms in reciprocal rhythm. Am J Cardiol. 1969 Aug;24(2):224–233. doi: 10.1016/0002-9149(69)90407-x. [DOI] [PubMed] [Google Scholar]
- Sherf L., James T. N. A new look at some old questions in clinical electrocardiography. Henry Ford Hosp Med J. 1966 Sep;14(3):265–308. [PubMed] [Google Scholar]
- Sommer J. R., Johnson E. A. Comparative ultrastructure of cardiac cell membrane specializations. A review. Am J Cardiol. 1970 Feb;25(2):184–194. doi: 10.1016/0002-9149(70)90578-3. [DOI] [PubMed] [Google Scholar]
- Spach M. S., Barr R. C., Serwer G. S., Johnson E. A., Kootsey J. M. Collision of excitation waves in the dog Purkinje system. Extracellular identification. Circ Res. 1971 Nov;29(5):499–511. doi: 10.1161/01.res.29.5.499. [DOI] [PubMed] [Google Scholar]
- Wennemark J. R., Ruesta V. J. Microelectrode study of 2:1 conduction block in canine Purkinje fibers. J Electrocardiol. 1971;4(1):50–57. doi: 10.1016/s0022-0736(71)80050-x. [DOI] [PubMed] [Google Scholar]