Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1973 Jun;52(6):1500–1508. doi: 10.1172/JCI107324

Dynamics of Glomerular Ultrafiltration in the Rat. IV. DETERMINATION OF THE ULTRAFILTRATION COEFFICIENT

William M Deen 1,2,3, Julia L Troy 1,2,3, Channing R Robertson 1,2,3, Barry M Brenner 1,2,3
PMCID: PMC302415  PMID: 4703234

Abstract

Pressures and flow rates were measured in accessible surface glomeruli of mutant Wistar rats under conditions deliberately designed to prevent achievement of filtration pressure equilibrium, that is, the equalization of transcapillary hydrostatic and oncotic pressures by the efferent end of the glomerulus as typically observed in the normal hydropenic rat. Disequilibrium was obtained at elevated levels of glomerular plasma flow (GPF) brought about by acute expansion of plasma volume with a volume of rat plasma equal to 5% of body weight. Glomerular hydrostatic and oncotic pressures measured at high GPF were used to calculate the ultrafiltration coefficient, Kf, the product of effective hydraulic permeability and surface area. GPF was then either lowered (by aortic constriction) or raised (by carotid occlusion) in order to examine the dependence of Kf on GPF. The value of Kf per glomerulus, 0.08 nl/(s·mm Hg), was found not to vary over an approximately twofold range of GPF. This finding, taken together with data from previous studies from this laboratory, leads us to conclude that plasma-flow dependence of glomerular filtration rate (GFR) results primarily from flow-induced changes in mean ultrafiltration pressure, rather than large changes in Kf.

Full text

PDF
1500

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreucci V. E., Herrera-Acosta J., Rector F. C., Jr, Seldin D. W. Effective glomerular filtration pressure and single nephron filtration rate during hydropenia, elevated ureteral pressure, and acute volume expansion with isotonic saline. J Clin Invest. 1971 Oct;50(10):2230–2234. doi: 10.1172/JCI106719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brenner B. M., Bennett C. M., Berliner R. W. The relationship between glomerular filtration rate and sodium reabsorption by the proximal tubule of the rat nephron. J Clin Invest. 1968 Jun;47(6):1358–1374. doi: 10.1172/JCI105828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brenner B. M., Daugharty T. M., Ueki I. F., Troy J. L. Quantitative assessment of proximal tubule function in single nephrons of the rat kidney. Am J Physiol. 1971 Jun;220(6):2058–2067. doi: 10.1152/ajplegacy.1971.220.6.2058. [DOI] [PubMed] [Google Scholar]
  4. Brenner B. M., Falchuk K. H., Keimowitz R. I., Berliner R. W. The relationship between peritubular capillary protein concentration and fluid reabsorption by the renal proximal tubule. J Clin Invest. 1969 Aug;48(8):1519–1531. doi: 10.1172/JCI106118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brenner B. M., Galla J. H. Influence of postglomerular hematocrit and protein concentration on rat nephron fluid transfer. Am J Physiol. 1971 Jan;220(1):148–161. doi: 10.1152/ajplegacy.1971.220.1.148. [DOI] [PubMed] [Google Scholar]
  6. Brenner B. M., Troy J. L., Daugharty T. M., Deen W. M., Robertson C. R. Dynamics of glomerular ultrafiltration in the rat. II. Plasma-flow dependence of GFR. Am J Physiol. 1972 Nov;223(5):1184–1190. doi: 10.1152/ajplegacy.1972.223.5.1184. [DOI] [PubMed] [Google Scholar]
  7. Brenner B. M., Troy J. L., Daugharty T. M. Pressures in cortical structures of the rat kidney. Am J Physiol. 1972 Feb;222(2):246–251. doi: 10.1152/ajplegacy.1972.222.2.246. [DOI] [PubMed] [Google Scholar]
  8. Brenner B. M., Troy J. L., Daugharty T. M. The dynamics of glomerular ultrafiltration in the rat. J Clin Invest. 1971 Aug;50(8):1776–1780. doi: 10.1172/JCI106667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brenner B. M., Ueki I. F., Daugharty T. M. On estimating colloid osmotic pressure in pre- and postglomerular plasma in the rat. Kidney Int. 1972 Jul;2(1):51–53. doi: 10.1038/ki.1972.68. [DOI] [PubMed] [Google Scholar]
  10. Deen W. M., Robertson C. R., Brenner B. M. A model of glomerular ultrafiltration in the rat. Am J Physiol. 1972 Nov;223(5):1178–1183. doi: 10.1152/ajplegacy.1972.223.5.1178. [DOI] [PubMed] [Google Scholar]
  11. Deen W. M., Robertson C. R., Brenner B. M. A model of peritubular capillary control of isotonic fluid reabsorption by the renal proximal tubule. Biophys J. 1973 Apr;13(4):340–358. doi: 10.1016/S0006-3495(73)85989-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. FUHR J., KACZMARCZYK J., KRUTTGEN C. D. Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin Wochenschr. 1955 Aug 1;33(29-30):729–730. doi: 10.1007/BF01473295. [DOI] [PubMed] [Google Scholar]
  13. Falchuk K. H., Berliner R. W. Hydrostatic pressures in peritubular capillaries and tubules in the rat kidney. Am J Physiol. 1971 May;220(5):1422–1426. doi: 10.1152/ajplegacy.1971.220.5.1422. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. PAPPENHEIMER J. R., RENKIN E. M., BORRERO L. M. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol. 1951 Oct;167(1):13–46. doi: 10.1152/ajplegacy.1951.167.1.13. [DOI] [PubMed] [Google Scholar]
  16. Robertson C. R., Deen W. M., Troy J. L., Brenner B. M. Dynamics of glomerular ultrafiltration in the rat. 3. Hemodynamics and autoregulation. Am J Physiol. 1972 Nov;223(5):1191–1200. doi: 10.1152/ajplegacy.1972.223.5.1191. [DOI] [PubMed] [Google Scholar]
  17. Smaje L., Zweifach B. W., Intaglietta M. Micropressures and capillary filtration coefficients in single vessels of the cremaster muscle of the rat. Microvasc Res. 1970 Jan;2(1):96–110. doi: 10.1016/0026-2862(70)90055-5. [DOI] [PubMed] [Google Scholar]
  18. WIEDERHIELM C. A., WOODBURY J. W., KIRK S., RUSHMER R. F. PULSATILE PRESSURES IN THE MICROCIRCULATION OF FROG'S MESENTERY. Am J Physiol. 1964 Jul;207:173–176. doi: 10.1152/ajplegacy.1964.207.1.173. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES