Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1973 Aug;52(8):2029–2040. doi: 10.1172/JCI107387

The Mechanics of Esophageal Muscle Contraction. EVIDENCE OF AN INOTROPIC EFFECT OF GASTRIN

Sidney Cohen 1, Fe Green 1
PMCID: PMC302485  PMID: 4719676

Abstract

To compare the mechanical properties of lower esophageal sphincter (LES) and esophageal circular smooth muscle, force-velocity determinations were made under various physiological conditions. Isotonic and isometric recordings of opossum circular muscle were used to obtain the velocity of shortening and force, respectively, during alterations in: (a) initial muscle length (preload), (b) afterload, (c) calcium concentration, and (d) gastrin I. Muscle contraction was elicited to the neurogenic response at the termination of electrical stimulation. A change in preload (muscle length) altered the peak force (Po) developed during an afterloaded contraction, but had only a minor effect on the maximum velocity of shortening (V max). At the length of optimal tension development, Lo, (preload, 1.5 g), the LES muscle had a V max of 6.1±0.2 mm/s and a Po of 17.7±0.7 g. The esophageal muscle at its Lo (preload, 2.0 g) had a V max of 6.3±0.5 mm/s and a Po of 18.1±1.2 g. A decrease in calcium from 2.5 mM to 1.0 mM significantly reduced the V max and Po of all muscle, but an increase in calcium to 5.0 mM increased these parameters only minimally. At a calcium of 1.0 mM, gastrin I increased both V max and Po of all muscle. This inotropic effect of gastrin I occurred at lower concentrations in LES muscle than in muscle from the upper esophagus. The power (force × velocity) and work (force × muscle shortening) of esophageal and LES muscle were calculated from these data. Both the work and power generated during esophageal and LES muscle contraction were determined by: (a) the initial muscle length as produced by the preload, (b) the afterload against which the muscle was contracting, and (c) the contractility of inotropism of the muscle, that is, the force-velocity curve on which the muscle was operating.

Full text

PDF
2029

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Castell D. O., Harris L. D. Hormonal control of gastroesophageal-sphincter strength. N Engl J Med. 1970 Apr 16;282(16):886–889. doi: 10.1056/NEJM197004162821602. [DOI] [PubMed] [Google Scholar]
  2. Christensen J., Lund G. F. Esophageal responses to distension and electrical stimulation. J Clin Invest. 1969 Feb;48(2):408–419. doi: 10.1172/JCI105998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen S., Harris L. D. Does hiatus hernia affect competence of the gastroesophageal sphincter? N Engl J Med. 1971 May 13;284(19):1053–1056. doi: 10.1056/NEJM197105132841902. [DOI] [PubMed] [Google Scholar]
  4. Cohen S., Harris L. D. Lower esophageal sphincter pressure as an index of lower esophageal sphincter strength. Gastroenterology. 1970 Feb;58(2):157–162. [PubMed] [Google Scholar]
  5. Cohen S., Lipshutz W. Hormonal regulation of human lower esophageal sphincter competence: interaction of gastrin and secretin. J Clin Invest. 1971 Feb;50(2):449–454. doi: 10.1172/JCI106512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goldstein R. E., Skelton C. L., Levey G. S., Glancy D. L., Beiser G. D., Epstein S. E. Effects of chronic heart failure on the capacity of glucagon to enhance contractility and adenyl cyclase activity of human papillary muscles. Circulation. 1971 Oct;44(4):638–648. doi: 10.1161/01.cir.44.4.638. [DOI] [PubMed] [Google Scholar]
  7. Gordon A. R., Siegman M. J. Mechanical properties of smooth muscle. I. Length-tension and force-velocity relations. Am J Physiol. 1971 Nov;221(5):1243–1249. doi: 10.1152/ajplegacy.1971.221.5.1243. [DOI] [PubMed] [Google Scholar]
  8. Gordon A. R., Siegman M. J. Mechanical properties of smooth muscle. II. Active state. Am J Physiol. 1971 Nov;221(5):1250–1254. doi: 10.1152/ajplegacy.1971.221.5.1250. [DOI] [PubMed] [Google Scholar]
  9. HILL A. V. Mechanics of the contractile element of muscle. Nature. 1950 Sep 9;166(4219):415–419. doi: 10.1038/166415a0. [DOI] [PubMed] [Google Scholar]
  10. Hollis J. B., Levine S. M., Castell D. O. Differential sensitivity of the human esophagus to pentagastrin. Am J Physiol. 1972 Apr;222(4):870–874. doi: 10.1152/ajplegacy.1972.222.4.870. [DOI] [PubMed] [Google Scholar]
  11. Lind J. F., Warrian W. G., Wankling W. J. Responses of the gastroesophageal junctional zone to increases in abdominal pressure. Can J Surg. 1966 Jan;9(1):32–38. [PubMed] [Google Scholar]
  12. Lipshutz W., Cohen S. Physiological determinants of lower esophageal sphincter function. Gastroenterology. 1971 Jul;61(1):16–24. [PubMed] [Google Scholar]
  13. Lund G. F., Christensen J. Electrical stimulation of esophageal smooth muscle and effects of antagonists. Am J Physiol. 1969 Nov;217(5):1369–1374. doi: 10.1152/ajplegacy.1969.217.5.1369. [DOI] [PubMed] [Google Scholar]
  14. Meiss R. A. Some mechanical properties of cat intestinal muscle. Am J Physiol. 1971 Jun;220(6):2000–2007. doi: 10.1152/ajplegacy.1971.220.6.2000. [DOI] [PubMed] [Google Scholar]
  15. Parmley W. W., Glick G., Sonnenblick E. H. Cardiovascular effects of glucagon in man. N Engl J Med. 1968 Jul 4;279(1):12–17. doi: 10.1056/NEJM196807042790103. [DOI] [PubMed] [Google Scholar]
  16. Pope C. E., 2nd, Horton P. F. Intraluminal force transducer measurements of human oesophageal peristalsis. Gut. 1972 Jun;13(6):464–470. doi: 10.1136/gut.13.6.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SONNENBLICK E. H. Force-velocity relations in mammalian heart muscle. Am J Physiol. 1962 May;202:931–939. doi: 10.1152/ajplegacy.1962.202.5.931. [DOI] [PubMed] [Google Scholar]
  18. SONNENBLICK E. H. Implications of muscle mechanics in the heart. Fed Proc. 1962 Nov-Dec;21:975–990. [PubMed] [Google Scholar]
  19. SPARKS H. V., Jr, BOHR D. F. Effect of stretch on passive tension and contractility of isolated vascular smooth muscle. Am J Physiol. 1962 May;202:835–840. doi: 10.1152/ajplegacy.1962.202.5.835. [DOI] [PubMed] [Google Scholar]
  20. Siegman M. J., Gordon A. R. Potentiation of contraction: effects of calcium and caffeine on active state. Am J Physiol. 1972 Jun;222(6):1587–1593. doi: 10.1152/ajplegacy.1972.222.6.1587. [DOI] [PubMed] [Google Scholar]
  21. Stephens N. L., Kroeger E., Mehta J. A. Force-velocity characteristics of respiratory airway smooth muscle. J Appl Physiol. 1969 Jun;26(6):685–692. doi: 10.1152/jappl.1969.26.6.685. [DOI] [PubMed] [Google Scholar]
  22. Tuch A., Cohen S. Lower esophageal sphincter relaxation: studies on the neurogenic inhibitory mechanism. J Clin Invest. 1973 Jan;52(1):14–20. doi: 10.1172/JCI107157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. WILKIE D. R. The mechanical properties of muscle. Br Med Bull. 1956 Sep;12(3):177–182. doi: 10.1093/oxfordjournals.bmb.a069546. [DOI] [PubMed] [Google Scholar]
  24. Weisbrodt N. W., Christensen J. Gradients of contractions in the opossum esophagus. Gastroenterology. 1972 Jun;62(6):1159–1166. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES