Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1973 Aug;52(8):2068–2074. doi: 10.1172/JCI107391

Disparate Enzyme Activity in Erythrocytes and Leukocytes. A VARIANT OF HYPOXANTHINE PHOSPHORIBOSYL-TRANSFERASE DEFICIENCY WITH AN UNSTABLE ENZYME

Joseph Dancis 1,2,3,4, Lily C Yip 1,2,3,4, Rody P Cox 1,2,3,4, Sergio Piomelli 1,2,3,4, M Earl Balis 1,2,3,4
PMCID: PMC302489  PMID: 4352580

Abstract

A family is reported in which each of two sisters has a son with no detectable hypoxanthine phosphoribosyltransferase (HPRT) (EC 2. 4. 2. 8) in his erythrocytes, a finding considered pathognomonic of Lesch-Nyhan disease. However, neither has the stigmata of the disease. One boy is neurologically normal, and the other is moderately retarded. There was only a slight increase in urinary uric acid, but the amounts of hypoxanthine and xanthine, and their ratios, were similar to those found in Lesch-Nyhan disease, strongly indicating that excesses of these last two oxypurines are not responsible for the symptomatology in that disease. In contrast to the nondetectable HPRT activity in the red blood cells, leukocyte lysates from the two boys have 10-15% of normal activity, possibly reflecting continuing synthesis of an unstable enzyme. This hypothesis is supported by the demonstration that at 4°C HPRT activity was rapidly lost in the propositus while the activity increased in control subjects. The mother's cells were intermediate between the two. The intact and disrupted leukocytes of the hemizygote, in the absence of added phosphoribosyl converted as much hypoxanthine to inosinate as the normal cell, and appropriate tests indicated that under these circumstances enzyme concentration is not rate limiting whereas the concentration of the cosubstrate, phosphoribosyl pyrophosphate, is. The capacity for normal function in the intact mutant cell is more representative of in vivo conditions than the lysate, which may explain the important modification of clinical symptomatology, the relatively mild hyperuricosuria, and the presence of mosaicism in the circulating blood cells of the heterozygotes. A similar explanation may apply to other genetic diseases in which incomplete but severe enzyme deficiencies are found in clinically normal individuals.

An associated deficiency in glucose-6-phosphate dehydrogenase in this family permitted confirmation of previous observations on linkage with hypoxanthine phosphoribosyltransferase.

Full text

PDF
2068

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakay B., Nyhan W. L., Fawcett N., Kogut M. D. Isoenzymes of hypoxanthine-guanine-phosphoribosyl transferase in a family with partial deficiency of the enzyme. Biochem Genet. 1972 Aug;7(1):73–85. doi: 10.1007/BF00487011. [DOI] [PubMed] [Google Scholar]
  2. Balis M. E., Krakoff I. H., Berman P. H., Dancis J. Urinary metabolites in congenital hyperuricosuria. Science. 1967 May 26;156(3778):1122–1123. doi: 10.1126/science.156.3778.1122. [DOI] [PubMed] [Google Scholar]
  3. Berman P. H., Balis M. E., Dancis J. Diagnostic test for congenital hyperuricemia with central nervous system dysfunction. J Lab Clin Med. 1968 Feb;71(2):247–253. [PubMed] [Google Scholar]
  4. DEMARS R. SOME STUDIES OF ENZYMES IN CULTIVATED HUMAN CELLS. Natl Cancer Inst Monogr. 1964 Apr;13:181–195. [PubMed] [Google Scholar]
  5. Dancis J., Berman P. H., Jansen V., Balis M. E. Absence of mosaicism in the lymphocyte in X-linked congenital hyperuricosuria. Life Sci. 1968 Jun 15;7(12):587–591. doi: 10.1016/0024-3205(68)90079-9. [DOI] [PubMed] [Google Scholar]
  6. Dancis J., Hutzler J., Cox R. P., Woody N. C. Familial hyperlysinemia with lysine-ketoglutarate reductase insufficiency. J Clin Invest. 1969 Aug;48(8):1447–1452. doi: 10.1172/JCI106110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Delbarre F., Cartier P., Auscher C., de Géry A., Hamet M. Gouttes enzymopathiques. Dyspurinies par déficit en hypoxanthine-guanine-phosphoribosyltransférase. Fréquence et caractères cliniques de L'anenzymose. Presse Med. 1970 Mar 28;78(16):729–734. [PubMed] [Google Scholar]
  8. Emmerson B. T., Wallace D. C., Thompson C. J. Partial deficiency of hypoxanthine-guanine phosphoribosyltransferase: intermediate enzyme deficiency in heterozygote red cells. Ann Intern Med. 1972 Feb;76(2):285–287. doi: 10.7326/0003-4819-76-2-285. [DOI] [PubMed] [Google Scholar]
  9. Felix J. S., DeMars R. Detection of females heterozygous for the Lesch-Nyhan mutation by 8-azaguanine-resistant growth of cultured fibroblasts. J Lab Clin Med. 1971 Apr;77(4):596–604. [PubMed] [Google Scholar]
  10. Henderson J. F., Brox L. W., Kelley W. N., Rosenbloom F. M., Seegmiller J. E. Kinetic studies of hypoxanthine-guanine phosphoribosyltransferase. J Biol Chem. 1968 May 25;243(10):2514–2522. [PubMed] [Google Scholar]
  11. KIRKMAN H. N., HENDRICKSON E. M. Sex-linked electrophoretic difference in glucose-6-phosphate dehydrogenase. Am J Hum Genet. 1963 Sep;15:241–258. [PMC free article] [PubMed] [Google Scholar]
  12. Kelley W. N., Greene M. L., Rosenbloom F. M., Henderson J. F., Seegmiller J. E. Hypoxanthine-guanine phosphoribosyltransferase deficiency in gout. Ann Intern Med. 1969 Jan;70(1):155–206. doi: 10.7326/0003-4819-70-1-155. [DOI] [PubMed] [Google Scholar]
  13. Migeon B. R. X-linked hypoxanthine-guanine phosphoribosyl transferase deficiency: detection of heterozygotes by selective medium. Biochem Genet. 1970 Jun;4(3):377–383. doi: 10.1007/BF00485754. [DOI] [PubMed] [Google Scholar]
  14. Miller O. J., Cook P. R., Meera Khan P., Shin S., Siniscalco M. Mitotic separation of two human X-linked genes in man--mouse somatic cell hybrids. Proc Natl Acad Sci U S A. 1971 Jan;68(1):116–120. doi: 10.1073/pnas.68.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nishi H. H. Determination of uric acid. An adaptation of the Archibald method on the autoanalyzer. Clin Chem. 1967 Jan;13(1):12–18. [PubMed] [Google Scholar]
  16. Nyhan W. L., Bakay B., Connor J. D., Marks J. F., Keele D. K. Hemizygous expression of glucose-6-phosphate dehydrogenase in erythrocytes of heterozygotes for the Lesch-Nyhan syndrome. Proc Natl Acad Sci U S A. 1970 Jan;65(1):214–218. doi: 10.1073/pnas.65.1.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Piomelli S., Corash L. M., Davenport D. D., Miraglia J., Amorosi E. L. In vivo lability of glucose-6-phosphate dehydrogenase in GdA- and GdMediterranean deficiency. J Clin Invest. 1968 Apr;47(4):940–948. doi: 10.1172/JCI105786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rubin C. S., Balis M. E., Piomelli S., Berman P. H., Dancis J. Elevated AMP pyrophosphorylase activity in congenital IMP pyrophosphorylase deficiencey (Lesch-Nyhan disease). J Lab Clin Med. 1969 Nov;74(5):732–741. [PubMed] [Google Scholar]
  19. Rubin C. S., Dancis J., Yip L. C., Nowinski R. C., Balis M. E. Purification of IMP:pyrophosphate phosphoribosyltransferases, catalytically incompetent enzymes in Lesch-Nyhan disease. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1461–1464. doi: 10.1073/pnas.68.7.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Smith J. L., Omura G. A., Krakoff I. H., Balis M. E. IMP: and AMP:pyrophosphate phosphoribosyltransferase in leukemic and normal human leukocytes. Proc Soc Exp Biol Med. 1971 Apr;136(4):1299–1303. doi: 10.3181/00379727-136-35480. [DOI] [PubMed] [Google Scholar]
  21. TIVEY H., LI J. G., OSGOOD E. E., DUERST M., KLOBUCHER V., PETERSON E., HUGHES M. E. The average volume of leukemic leukocytes. Blood. 1951 Nov;6(11):1013–1020. [PubMed] [Google Scholar]
  22. Yü T. F., Balis M. E., Krenitsky T. A., Dancis J., Silvers D. N., Elion G. B., Gutman A. B. Rarity of X-linked partial hypoxanthine-guanine phosphoribosyltransferase deficiency in a large gouty population. Ann Intern Med. 1972 Feb;76(2):255–264. doi: 10.7326/0003-4819-76-2-255. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES