Abstract
The specific activity of sodium-potassium-activated adenosine triphosphatase (Na-K-ATPase) in homogenates of rat kidneys increases when the dietary intake of potassium is chronically increased. The effect is seen first and is most prominent in the outer medulla, but large loads of potassium elicit an increase in the cortex as well. Levels of Na-K-ATPase in brian, liver, and muscle, by contrast, are unaffected by potassium loading. Although the changes in enzyme activity in the kidney resemble those reportedly produced by aldosterone, they are not induced by experimental sodium deprivation, and they can be evoked by potassium loading in the absence of the adrenal glands. The results suggest that Na-K-ATPase of renal tubular cells, presumably in the distal tubules and collecting ducts, plays an important role in the phenomenon of potassium adaptation and in the process by which potassium is excreted into the urine.
Full text
PDF![2665](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d684/302532/c3c7c8ee6452/jcinvest00186-0007.png)
![2666](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d684/302532/fee8b5aeaef4/jcinvest00186-0008.png)
![2667](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d684/302532/80a4099c52df/jcinvest00186-0009.png)
![2668](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d684/302532/3259eaf2d72b/jcinvest00186-0010.png)
![2669](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d684/302532/49809fad78b2/jcinvest00186-0011.png)
![2670](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d684/302532/17df6fb68710/jcinvest00186-0012.png)
![2671](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d684/302532/749ededae868/jcinvest00186-0013.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander E. A., Levinsky N. G. An extrarenal mechanism of potassium adaptation. J Clin Invest. 1968 Apr;47(4):740–748. doi: 10.1172/JCI105769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd J. E., Mulrow P. J. Further studies of the influence of potassium upon aldosterone production in the rat. Endocrinology. 1972 Jan;90(1):299–301. doi: 10.1210/endo-90-1-299. [DOI] [PubMed] [Google Scholar]
- Boyd J. E., Palmore W. P., Mulrow P. J. Role of potassium in the control of aldosterone secretion in the rat. Endocrinology. 1971 Mar;88(3):556–565. doi: 10.1210/endo-88-3-556. [DOI] [PubMed] [Google Scholar]
- EMMELOT P., BOS C. J., BENEDETTI E. L., RUEMKE P. STUDIES ON PLASMA MEMBRANES. I. CHEMICAL COMPOSITION AND ENZYME CONTENT OF PLASMA MEMBRANES ISOLATED FROM RAT LIVER. Biochim Biophys Acta. 1964 Jul 15;90:126–145. doi: 10.1016/0304-4165(64)90125-4. [DOI] [PubMed] [Google Scholar]
- Frindt G., Burg M. B. Effect of vasopressin on sodium transport in renal cortical collecting tubules. Kidney Int. 1972 Apr;1(4):224–231. doi: 10.1038/ki.1972.32. [DOI] [PubMed] [Google Scholar]
- Funder J. W., Blair-West J. R., Coghlan J. P., Denton D. A., Scoggins B. S., Wright R. D. Effect of (K+) on the secretion of aldosterone. Endocrinology. 1969 Aug;85(2):381–384. doi: 10.1210/endo-85-2-381. [DOI] [PubMed] [Google Scholar]
- Giebisch G., Boulpaep E. L., Whittembury G. Electrolyte transport in kidney tubule cells. Philos Trans R Soc Lond B Biol Sci. 1971 Aug 20;262(842):175–196. doi: 10.1098/rstb.1971.0088. [DOI] [PubMed] [Google Scholar]
- Hendler E. D., Torretti J., Kupor L., Epstein F. H. Effects of adrenalectomy and hormone replacement on Na- K-ATPase in renal tissue. Am J Physiol. 1972 Mar;222(3):754–760. doi: 10.1152/ajplegacy.1972.222.3.754. [DOI] [PubMed] [Google Scholar]
- Jorgensen P. L. Regulation of the (Na+ equals K+)-activated ATP hydrolyzing enzyme system in rat kidney. II. The effect of aldosterone on the activity in kidneys of adrenalectomized rats. Biochim Biophys Acta. 1969 Nov 18;192(2):326–334. [PubMed] [Google Scholar]
- Katz A. I., Epstein F. H. The role of sodium-potassium-activated adenosine triphosphatase in the reabsorption of sodium by the kidney. J Clin Invest. 1967 Dec;46(12):1999–2011. doi: 10.1172/JCI105689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kriz W. Der architektonische und funktionelle Aufbau der Rattenniere. Z Zellforsch Mikrosk Anat. 1967;82(4):495–535. [PubMed] [Google Scholar]
- LEVITIN H., AMICK C. J., EPSTEIN F. H. Response of tissue electrolytes to respiratory acidosis. Am J Physiol. 1961 Jun;200:1151–1154. doi: 10.1152/ajplegacy.1961.200.6.1151. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Michell R. H., Hawthorne J. N. The site of diphosphoinositide synthesis in rat liver. Biochem Biophys Res Commun. 1965 Nov 22;21(4):333–338. doi: 10.1016/0006-291x(65)90198-1. [DOI] [PubMed] [Google Scholar]
- SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
- Schmidt U., Dubach U. C. Activity of (Na+K+)-stimulated adenosintriphosphatase in the rat nephron. Pflugers Arch. 1969;306(3):219–226. doi: 10.1007/BF00592433. [DOI] [PubMed] [Google Scholar]
- Schmidt U., Dubach U. C. Na K stimulated adenosinetriphosphatase: intracellular localisation within the proximal tubule of the rat nephron. Pflugers Arch. 1971;330(3):265–270. doi: 10.1007/BF00588617. [DOI] [PubMed] [Google Scholar]
- Wright F. S., Strieder N., Fowler N. B., Giebisch G. Potassium secretion by distal tubule after potassium adaptation. Am J Physiol. 1971 Aug;221(2):437–448. doi: 10.1152/ajplegacy.1971.221.2.437. [DOI] [PubMed] [Google Scholar]