Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1973 Nov;52(11):2885–2895. doi: 10.1172/JCI107485

Postnatal Changes in Renal Glomerular Blood Flow Distribution in Puppies

Hermann Olbing 1,2,3,4,5,6, M Donald Blaufox 1,2,3,4,5,6, Lorenzo C Aschinberg 1,2,3,4,5,6, Geraldine I Silkalns 1,2,3,4,5,6, Jay Bernstein 1,2,3,4,5,6, Adrian Spitzer 1,2,3,4,5,6, Chester M Edelmann Jr 1,2,3,4,5,6
PMCID: PMC302557  PMID: 4748514

Abstract

The intrarenal distribution of radionuclide microspheres injected into the thoracic aorta was used to examine glomerular blood flow distribution (GBFD) in 26 healthy, unanesthetized puppies, ranging in age from 5 h to 42 days, and in 5 adult dogs. For analysis, the cortex was divided into four equally thick zones designated zone I (subcapsular) to zone IV (juxtamedullary).

During the first 36 h of life, the highest flow rate was in zone II, which received 35.5±2.0%/g, compared with 26.8±1.4% to zone I, 23.7±1.4% to zone III, and 13.4±1.4% to zone IV. At age 6 wk, zone I had the highest rate of perfusion (48.6±2.1%, compared with 28.8±1.4% in zone II, 15.8±0.8%, in zone III, and 6.8±0.6% in zone IV). The 6-wk old animals resembled the adult animals, except for relatively greater perfusion per gram of zone I in the former group. Changes in relative GBFD did not correlate with those in arterial pressure or peripheral hematocrit.

The distribution of glomeruli among the four zones of the cortex followed its own pattern of development. At birth and at 6 wk, the greatest density of glomeruli was in zone I (50.6±5.4 and 42.7±3.9%/g respectively, as compared with 24.1±2.9% in adults); in adults zone II contained the greatest density (39.1±1.6%).

At birth the relative perfusion of glomeruli in zone I was only one-fifth that of glomeruli in zone IV, with intermediate values in zones II and III. By 6 wk of age, increased perfusion of the outer cortical glomeruli resulted in rates of flow in the four zones that did not differ significantly from each other. Relative perfusion in zone I continued to increase, so that in the adult animals perfusion in that zone was significantly greater than in the three deeper zones.

These data demonstrate the marked hemodynamic changes that take place within the kidney during the first few weeks of life. The relatively greater blood flow of the most deeply situated nephrons in the early postnatal period suggests ascendancy of this population of nephrons and may have important functional implications.

Full text

PDF
2885

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEXANDER D. P., NIXON D. A. Plasma clearance of p-aminohippuric acid by the kidneys of foetal, neonatal and adult sheep. Nature. 1962 May 5;194:483–484. doi: 10.1038/194483b0. [DOI] [PubMed] [Google Scholar]
  2. ALEXANDER D. P., NIXON D. A. Reabsorption of glucose, fructose and meso-inositol by the foetal and post-natal sheep kidney. J Physiol. 1963 Jul;167:480–486. doi: 10.1113/jphysiol.1963.sp007163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. ALEXANDER D. P., NIXON D. A. The foetal kidney. Br Med Bull. 1961 May;17:112–117. doi: 10.1093/oxfordjournals.bmb.a069883. [DOI] [PubMed] [Google Scholar]
  4. BOYLAN J. W., COLBOURN E. P., McCANCE R. A. Renal function in the foetal and new-born guinea-pig. J Physiol. 1958 Apr 30;141(2):323–331. doi: 10.1113/jphysiol.1958.sp005976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barratt L. J., Wallin J. D., Rector F. C., Jr, Seldin D. W. Influence of volume expansion on single-nephron filtration rate and plasma flow in the rat. Am J Physiol. 1973 Mar;224(3):643–650. doi: 10.1152/ajplegacy.1973.224.3.643. [DOI] [PubMed] [Google Scholar]
  6. Bay W. H., Stein J. H., Rector J. B., Osgood R. W., Ferris T. F. Redistribution of renal cortical blood flow during elevated ureteral pressure. Am J Physiol. 1972 Jan;222(1):33–37. doi: 10.1152/ajplegacy.1972.222.1.33. [DOI] [PubMed] [Google Scholar]
  7. Blantz R. C., Katz M. A., Rector F. C., Jr, Seldin D. W. Measurement of intrarenal blood flow. II. Effect of saline diuresis in the dog. Am J Physiol. 1971 Jun;220(6):1914–1920. doi: 10.1152/ajplegacy.1971.220.6.1914. [DOI] [PubMed] [Google Scholar]
  8. CALCAGNO P. L., RUBIN M. I. RENAL EXTRACTION OF PARA-AMINOHIPPURATE IN INFANTS AND CHILDREN. J Clin Invest. 1963 Oct;42:1632–1639. doi: 10.1172/JCI104848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. CHEZ R. A., SMITH R. G., HUTCHINSON D. L. RENAL FUNCTION IN THE INTRAUTERINE PRIMATE FETUS. I. EXPERIMENTAL TECHNIQUE; RATE OF FORMATION AND CHEMICAL COMPOSITION OF URINE. Am J Obstet Gynecol. 1964 Sep 1;90:128–131. doi: 10.1016/s0002-9378(16)34900-6. [DOI] [PubMed] [Google Scholar]
  10. DICKER S. E. Effect of diuretics in newborn rats and puppies. J Physiol. 1952 Nov;118(3):384–394. doi: 10.1113/jphysiol.1952.sp004802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dean R. F., McCance R. A. Inulin, diodone, creatinine and urea clearances in newborn infants. J Physiol. 1947 Oct 15;106(4):431–439. doi: 10.1113/jphysiol.1947.sp004224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. FALK G. Maturation of renal function in infant rats. Am J Physiol. 1955 Apr;181(1):157–170. doi: 10.1152/ajplegacy.1955.181.1.157. [DOI] [PubMed] [Google Scholar]
  13. FETTERMAN G. H., SHUPLOCK N. A., PHILIPP F. J., GREGG H. S. THE GROWTH AND MATURATION OF HUMAN GLOMERULI AND PROXIMAL CONVOLUTIONS FROM TERM TO ADULTHOOD: STUDIES BY MICRODISSECTION. Pediatrics. 1965 Apr;35:601–619. [PubMed] [Google Scholar]
  14. Gruskin A. B., Edelmann C. M., Jr, Yuan S. Maturational changes in renal blood flow in piglets. Pediatr Res. 1970 Jan;4(1):7–13. doi: 10.1203/00006450-197001000-00001. [DOI] [PubMed] [Google Scholar]
  15. Heller J., Capek K. Changes in body water compartments and inulin and PAH clearance in the dog during postnatal development. Physiol Bohemoslov. 1965;14(5):433–438. [PubMed] [Google Scholar]
  16. Horster M., Lewy J. E. Filtration fraction and extraction of PAH during neonatal period in the rat. Am J Physiol. 1970 Oct;219(4):1061–1065. doi: 10.1152/ajplegacy.1970.219.4.1061. [DOI] [PubMed] [Google Scholar]
  17. Horster M., Valtin H. ostnatal development of renal function: micropuncture and clearance studies in the dog. J Clin Invest. 1971 Apr;50(4):779–795. doi: 10.1172/JCI106549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jamison R. L. Intrarenal heterogeneity. The case for two functionally dissimilar populations of nephrons in the mammalian kidney. Am J Med. 1973 Mar;54(3):281–289. doi: 10.1016/0002-9343(73)90022-3. [DOI] [PubMed] [Google Scholar]
  19. Jose P. A., Logan A. G., Slotkoff L. M., Lilienfield L. S., Calcagno P. L., Eisner G. M. Intrarenal blood flow distribution in canine puppies. Pediatr Res. 1971 Aug;5(8):335–344. doi: 10.1203/00006450-197108000-00001. [DOI] [PubMed] [Google Scholar]
  20. Katz M. A., Blantz R. C., Rector F. C., Jr, Seldin D. W. Measurement of intrarenal blood flow. I. Analysis of microsphere method. Am J Physiol. 1971 Jun;220(6):1903–1913. doi: 10.1152/ajplegacy.1971.220.6.1903. [DOI] [PubMed] [Google Scholar]
  21. Kotchen T. A., Strickland A. L., Rice T. W., Walters D. R. A study of the renin-angiotensin system in newborn infants. J Pediatr. 1972 Jun;80(6):938–946. doi: 10.1016/s0022-3476(72)80005-2. [DOI] [PubMed] [Google Scholar]
  22. Källskog O., Ulfendahl H. R., Wolgast M. Single glomerular blood flow as measured with carbonized 141--Ce labelled microspheres. Acta Physiol Scand. 1972 Jul;85(3):408–413. doi: 10.1111/j.1748-1716.1972.tb05275.x. [DOI] [PubMed] [Google Scholar]
  23. LJUNGQVIST A. FETAL AND POSTNATAL DEVELOPMENT OF THE INTRARENAL ARTERIAL PATTERN IN MAN. A MICRO-ANGIOGRAPHIC AND HISTOLOGIC STUDY. Acta Paediatr. 1963 Sep;52:443–464. doi: 10.1111/j.1651-2227.1963.tb03804.x. [DOI] [PubMed] [Google Scholar]
  24. McCance R. A., Young W. F. The secretion of urine by newborn infants. J Physiol. 1941 Mar 25;99(3):265–282. doi: 10.1113/jphysiol.1941.sp003900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McNay J. L., Abe Y. Pressure-dependent heterogeneity of renal cortical blood flow in dogs. Circ Res. 1970 Oct;27(4):571–587. doi: 10.1161/01.res.27.4.571. [DOI] [PubMed] [Google Scholar]
  26. McNay J. L., Abe Y. Redistribution of cortical blood flow during renal vasodilatation in dogs. Circ Res. 1970 Dec;27(6):1023–1032. doi: 10.1161/01.res.27.6.1023. [DOI] [PubMed] [Google Scholar]
  27. Miyazaki M., McNay J. Redistribution of renal cortical blood flow during ureteral occlusion and renal venous constriction. Proc Soc Exp Biol Med. 1971 Nov;138(2):454–461. doi: 10.3181/00379727-138-35918. [DOI] [PubMed] [Google Scholar]
  28. Nashat F. S., Portal R. W. The effects of changes in haematocrit on renal function. J Physiol. 1967 Dec;193(3):513–522. doi: 10.1113/jphysiol.1967.sp008375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Potter D., Jarrah A., Sakai T., Harrah J., Holliday M. A. Character of function and size in kidney during normal growth of rats. Pediatr Res. 1969 Jan;3(1):51–59. doi: 10.1203/00006450-196901000-00007. [DOI] [PubMed] [Google Scholar]
  30. Rubin M. I., Bruck E., Rapoport M., Snively M., McKay H., Baumler A. MATURATION OF RENAL FUNCTION IN CHILDHOOD: CLEARANCE STUDIES. J Clin Invest. 1949 Sep;28(5 Pt 2):1144–1162. doi: 10.1172/JCI102149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rudolph A. M., Heymann M. A. The circulation of the fetus in utero. Methods for studying distribution of blood flow, cardiac output and organ blood flow. Circ Res. 1967 Aug;21(2):163–184. doi: 10.1161/01.res.21.2.163. [DOI] [PubMed] [Google Scholar]
  32. Schrier R. W., Earley L. E. Effects of hematocrit on renal hemodynamics and sodium excretion in hydropenic and volume-expanded dogs. J Clin Invest. 1970 Sep;49(9):1656–1667. doi: 10.1172/JCI106383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Slotkoff L. M., Logan A., Jose P., D'Avella J., Eisner G. M. Microsphere measurement of intrarenal circulation of the dog. Circ Res. 1971 Feb;28(2):158–166. doi: 10.1161/01.res.28.2.158. [DOI] [PubMed] [Google Scholar]
  34. Stein J. H., Ferris T. F., Huprich J. E., Smith T. C., Osgood R. W. Effect of renal vasodilatation on the distribution of cortical blood flow in the kidney of the dog. J Clin Invest. 1971 Jul;50(7):1429–1438. doi: 10.1172/JCI106626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. WEIL W. B., Jr The evaluation of renal function in infancy and childhood. Am J Med Sci. 1955 Jun;229(6):678–694. [PubMed] [Google Scholar]
  36. Wagner H. N., Jr, Rhodes B. A., Sasaki Y., Ryan J. P. Studies of the circulation with radioactive microspheres. Invest Radiol. 1969 Nov-Dec;4(6):374–386. doi: 10.1097/00004424-196911000-00004. [DOI] [PubMed] [Google Scholar]
  37. Wallin J. D., Rector F. C., Jr, Seldin D. W. Effect of volume expansion on intrarenal distribution of plasma flow in the dog. Am J Physiol. 1972 Jul;223(1):125–129. doi: 10.1152/ajplegacy.1972.223.1.125. [DOI] [PubMed] [Google Scholar]
  38. Wallin J. D., Rector F. C., Jr, Seldin D. W. Measurement of intrarenal plasma flow with antiglomerular basement-membrane antibody. Am J Physiol. 1971 Dec;221(6):1621–1628. doi: 10.1152/ajplegacy.1971.221.6.1621. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES