Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1974 May;53(5):1226–1236. doi: 10.1172/JCI107669

Interaction of Baroreceptor and Chemoreceptor Reflexes MODULATION OF THE CHEMORECEPTOR REFLEX BY CHANGES IN BARORECEPTOR ACTIVITY

Donald D Heistad 1, Francois M Abboud 1, Allyn L Mark 1, Phillip G Schmid 1
PMCID: PMC302609  PMID: 4825222

Abstract

The purpose of this study was to determine whether the level of arterial pressure and degree of baroreceptor activation affect responses to stimulation of chemoreceptors. Chemoreceptors were stimulated by injecting nicotine into the common carotid artery of anesthetized and paralyzed dogs. Responses were observed in the innervated gracilis muscle, perfused at constant flow while perfusion pressure was measured. Arterial pressure was lowered by bleeding the animals and raised by transient occlusion of the descending aorta. Vasoconstrictor responses to stimulation of chemoreceptors were enhanced by hypotension and inhibited by elevation of arterial pressure. Potentiation of the chemoreceptor reflex by hemorrhagic hypotension was not the result of altered vascular resistance in the gracilis muscle, sensitization of chemoreceptors by catecholamines or acidosis, or changes in cerebral perfusion pressure.

Additional studies were done in which we excluded the possibility that the changes resulted from direct effects of changes in arterial pressure on chemoreceptors. Both carotid bifurcations were isolated and perfused. On one side, pressure was raised to stimulate the carotid sinus baroreceptors. On the other side, the carotid body chemoreceptors were stimulated by nicotine or by hypoxic and hypercapnic blood. Activation of baroreceptors on one side attenuated the vasoconstrictor response to chemoreceptor stimulation on the other side. This excludes a direct effect of changes in arterial pressure on the chemoreceptors and suggests a central interaction of these reflexes.

We conclude that vasoconstrictor responses to stimulation of chemoreceptors are potentiated by hypotension and inhibited by transient hypertension. These effects appear to result at least in part from a central interaction of chemoreceptor and baroreceptor reflexes.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bristow J. D., Brown E. B., Jr, Cunningham D. J., Goode R. C., Howson M. G., Sleight P. The effects of hypercapnia, hypoxia and ventilation on the baroreflex regulation of the pulse interval. J Physiol. 1971 Jul;216(2):281–302. doi: 10.1113/jphysiol.1971.sp009525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CUNNINGHAM D. J., HEY E. N., PATRICK J. M., LLOYD B. B. The effect of noradrenaline infusion on the relation between pulmonary ventilation and the alveolar PO2 and PCO2 in man. Ann N Y Acad Sci. 1963 Jun 24;109:756–771. doi: 10.1111/j.1749-6632.1963.tb13504.x. [DOI] [PubMed] [Google Scholar]
  3. CUNNINGHAM D. J., SHAW D. G., LAHIRI S., LLOYD B. B. The effect of maintained ammonium chloride acidosis on the relation between pulmonary ventilation and alveolar oxygen and carbon dioxide in man. Q J Exp Physiol Cogn Med Sci. 1961 Oct;46:323–334. doi: 10.1113/expphysiol.1961.sp001550. [DOI] [PubMed] [Google Scholar]
  4. Calvelo M. G., Abboud F. M., Ballard D. R., Abdel-Sayed W. Reflex vascular responses to stimulation of chemoreceptors with nicotine and cyanide. Activation of adrenergic constriction in muscle and noncholinergic dilatation in dog's paw. Circ Res. 1970 Aug;27(2):259–276. doi: 10.1161/01.res.27.2.259. [DOI] [PubMed] [Google Scholar]
  5. Cunningham D. J., Petersen E. S., Pickering T. G., Sleight P. The effects of hypoxia, hypercapnia, and asphyxia on the baroreceptor-cardiac reflex at rest and during exercise in man. Acta Physiol Scand. 1972 Dec;86(4):456–465. [PubMed] [Google Scholar]
  6. FLOYD W. F., NEIL E. The influence of the sympathetic innervation of the carotid bifurcation on chemoceptor and baroceptor activity in the cat. Arch Int Pharmacodyn Ther. 1952 Sep 1;91(1-2):230–239. [PubMed] [Google Scholar]
  7. FOLKOW B., OBERG B. The effect of functionally induced changes of wall/lumen ratio on the vasoconstrictor response to standard amounts of vasoactive agents. Acta Physiol Scand. 1959 Nov 15;47:131–135. doi: 10.1111/j.1748-1716.1960.tb00063.x. [DOI] [PubMed] [Google Scholar]
  8. Gebber G. L., Taylor D. G., Weaver L. C. Electrophysiological studies on organization of central vasopressor pathways. Am J Physiol. 1973 Feb;224(2):470–481. doi: 10.1152/ajplegacy.1973.224.2.470. [DOI] [PubMed] [Google Scholar]
  9. Hainsworth R., Karim F. Left ventricular inotropic and peripheral vasomotor responses from independent changes in pressure in the carotid sinuses and cerebral arteries in anaesthetized dogs. J Physiol. 1973 Jan;228(1):139–155. doi: 10.1113/jphysiol.1973.sp010077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heistad D. D., Abboud F. M., Ballard D. R. Relationship between plasma sodium concentration and vascular reactivity in man. J Clin Invest. 1971 Oct;50(10):2022–2032. doi: 10.1172/JCI106695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heistad D. D., Wheeler R. C., Mark A. L., Schmid P. G., Abboud F. M. Effects of adrenergic stimulation on ventilation in man. J Clin Invest. 1972 Jun;51(6):1469–1475. doi: 10.1172/JCI106943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Korner I. Central nervous control of autonomic function-possible implications in the pathogenesis of hypertension. Circ Res. 1970 Oct;27(Suppl):159+–159+. [PubMed] [Google Scholar]
  13. Korner P. I. Integrative neural cardiovascular control. Physiol Rev. 1971 Apr;51(2):312–367. doi: 10.1152/physrev.1971.51.2.312. [DOI] [PubMed] [Google Scholar]
  14. LANDGREN S., NEIL E. Chemoreceptor impulse activity following haemorrhage. Acta Physiol Scand. 1951 Aug 25;23(2-3):158–167. doi: 10.1111/j.1748-1716.1951.tb00805.x. [DOI] [PubMed] [Google Scholar]
  15. LEE K. D., MAYOU R. A., TORRANCE R. W. THE EFFECT OF BLOOD PRESSURE UPON CHEMORECEPTOR DISCHARGE TO HYPOXIA, AND THE MODIFICATION OF THIS EFFECT BY THE SYMPATHETIC-ADRENAL SYSTEM. Q J Exp Physiol Cogn Med Sci. 1964 Apr;49:171–183. doi: 10.1113/expphysiol.1964.sp001717. [DOI] [PubMed] [Google Scholar]
  16. Miura M., Reis D. J. The role of the solitary and paramedian reticular nuclei in mediating cardiovascular reflex responses from carotid baro- and chemoreceptors. J Physiol. 1972 Jun;223(2):525–548. doi: 10.1113/jphysiol.1972.sp009861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Purves M. J. The role of the cervical sympathetic nerve in the regulation of oxygen consumption of the carotid body of the cat. J Physiol. 1970 Aug;209(2):417–431. doi: 10.1113/jphysiol.1970.sp009172. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES