Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1974 May;53(5):1290–1299. doi: 10.1172/JCI107676

Importance of Free Fatty Acids as a Determinant of Myocardial Oxygen Consumption and Myocardial Ischemic Injury during Norepinephrine Infusion in Dogs

Ole D Mjøs 1, John K Kjekshus 1, Jon Lekven 1
PMCID: PMC302616  PMID: 4825226

Abstract

Increased delivery of free fatty acids raises myocardial oxygen consumption (ṀVO2) without influencing mechanical performance. The effects of norepinephrine on ṀVO2 and on the size of ischemic injury after acute coronary occlusion were therefore studied before and during inhibition of lipolysis with β-pyridylcarbinol. In spite of similar mechanical responses to norepinephrine, ṀVO2 increased by 57±11% before and significantly less, 31±6%, (P < 0.01) during inhibition of lipolysis. After coronary occlusion the ischemic injury associated with norepinephrine infusion, as evidenced by epicardial mapping of S-T segment elevation, was larger before (7.9±1.1 mV) than during inhibited lipolysis (2.8±0.4 mV; P < 0.005). Average S-T segment elevation associated with norepinephrine infusion during inhibited lipolysis (2.8±0.4 mV) was even lower (P < 0.05) than during control occlusion alone, before drug administration (4.4±0.7 mV). In conjunction with an antilipolytic agent, norepinephrine was shown to reduce the extent and magnitude of the myocardial ischemic injury produced by acute coronary occlusion; this could be due to an improved balance between myocardial oxygen supply and requirement.

Full text

PDF
1290

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AUKLAND K., BOWER B. F., BERLINER R. W. MEASUREMENT OF LOCAL BLOOD FLOW WITH HYDROGEN GAS. Circ Res. 1964 Feb;14:164–187. doi: 10.1161/01.res.14.2.164. [DOI] [PubMed] [Google Scholar]
  2. AUKLAND K. Spectrophotometric determination of hemoglobin oxygen saturation in small blood samples. Scand J Clin Lab Invest. 1962;14:533–536. doi: 10.3109/00365516209051275. [DOI] [PubMed] [Google Scholar]
  3. Aukland K., Kiil F., Kjekshus J., Semb G. Local myocardial blood flow measured by hydrogen polarography; distribution and effect of hypoxia. Acta Physiol Scand. 1967 May;70(1):99–111. doi: 10.1111/j.1748-1716.1967.tb03604.x. [DOI] [PubMed] [Google Scholar]
  4. Bugge-Asperheim B., Kjekshus J. Left ventricular pressure and maximum rate of pressure rise as determinants of myocardial oxygen consumption during hemorrhagic hypotension in dogs. Acta Physiol Scand. 1970 Feb;78(2):174–183. doi: 10.1111/j.1748-1716.1970.tb04653.x. [DOI] [PubMed] [Google Scholar]
  5. Challoner D. R. Evidence for uncoupled respiration in thyrotoxic and epinephrine-stimulated myocardium. Am J Physiol. 1968 Feb;214(2):365–369. doi: 10.1152/ajplegacy.1968.214.2.365. [DOI] [PubMed] [Google Scholar]
  6. Coleman H. N., Sonnenblick E. H., Braunwald E. Mechanism of norepinephrine-induced stimulation of myocardial oxygen consumption. Am J Physiol. 1971 Sep;221(3):778–783. doi: 10.1152/ajplegacy.1971.221.3.778. [DOI] [PubMed] [Google Scholar]
  7. DOLE V. P. A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J Clin Invest. 1956 Feb;35(2):150–154. doi: 10.1172/JCI103259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FEGLER G. The reliability of the thermodilution method for determination of the cardiac output and the blood flow in central veins. Q J Exp Physiol Cogn Med Sci. 1957 Jul;42(3):254–266. doi: 10.1113/expphysiol.1957.sp001261. [DOI] [PubMed] [Google Scholar]
  9. JENNINGS R. B., SOMMERS H. M., SMYTH G. A., FLACK H. A., LINN H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 1960 Jul;70:68–78. [PubMed] [Google Scholar]
  10. Jennings R. B., Sommers H. M., Herdson P. B., Kaltenbach J. P. Ischemic injury of myocardium. Ann N Y Acad Sci. 1969 Jan 31;156(1):61–78. doi: 10.1111/j.1749-6632.1969.tb16718.x. [DOI] [PubMed] [Google Scholar]
  11. Kjekshus J. K., Mjos O. D. Effect of free fatty acids on myocardial function and metabolism in the ischemic dog heart. J Clin Invest. 1972 Jul;51(7):1767–1776. doi: 10.1172/JCI106978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kjekshus J. K., Mjos O. D. Effect of inhibition of lipolysis on infarct size after experimental coronary artery occlusion. J Clin Invest. 1973 Jul;52(7):1770–1778. doi: 10.1172/JCI107358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klocke F. J., Kaiser G. A., Ross J., Jr, Braunwald E. Mechanism of increase of myocardial oxygen uptake produced by catecholamines. Am J Physiol. 1965 Nov;209(5):913–918. doi: 10.1152/ajplegacy.1965.209.5.913. [DOI] [PubMed] [Google Scholar]
  14. Maroko P. R., Kjekshus J. K., Sobel B. E., Watanabe T., Covell J. W., Ross J., Jr, Braunwald E. Factors influencing infarct size following experimental coronary artery occlusions. Circulation. 1971 Jan;43(1):67–82. doi: 10.1161/01.cir.43.1.67. [DOI] [PubMed] [Google Scholar]
  15. Mjos O. D., Bugge-Asperheim B., Kiil F. Factors determining myocardial oxygen consumption (MVO 2 ) during elevation of aortic blood pressure. 2. Relation between MVO 2 and free fatty acids. Cardiovasc Res. 1972 Jan;6(1):23–27. doi: 10.1093/cvr/6.1.23. [DOI] [PubMed] [Google Scholar]
  16. Mjös O. D., Kjekshus J. Increased local metabolic rate by free fatty acids in the intact dog heart. Scand J Clin Lab Invest. 1971 Dec;28(4):389–393. doi: 10.3109/00365517109095714. [DOI] [PubMed] [Google Scholar]
  17. Moss A. J., Vittands I., Schenk E. A. Cardiovascular effects of sustained norepinephrine infusions. 1. Hemodynamics. Circ Res. 1966 May;18(5):596–604. doi: 10.1161/01.res.18.5.596. [DOI] [PubMed] [Google Scholar]
  18. RAAB W. THE NONVASCULAR METABOLIC MYOCARDIAL VULNERABILITY FACTOR IN "CORONARY HEART DISEASE". FUNDAMENTALS OF PATHOGENESIS, TREATMENT, AND PREVENTION. Am Heart J. 1963 Nov;66:685–706. doi: 10.1016/0002-8703(63)90327-2. [DOI] [PubMed] [Google Scholar]
  19. Schenk E. A., Galbreath R., Moss A. J. Cardiovascular effects of sustained norepinephrine infusions. 3. Lactic dehydrogenase isoenzyme release. Circ Res. 1966 May;18(5):616–619. doi: 10.1161/01.res.18.5.616. [DOI] [PubMed] [Google Scholar]
  20. Schenk E. A., Moss A. J. Cardiovascular effects of sustained norepinephrine infusions. II. Morphology. Circ Res. 1966 May;18(5):605–615. doi: 10.1161/01.res.18.5.605. [DOI] [PubMed] [Google Scholar]
  21. Sonnenblick E. H., Ross J., Jr, Braunwald E. Oxygen consumption of the heart. Newer concepts of its multifactoral determination. Am J Cardiol. 1968 Sep;22(3):328–336. doi: 10.1016/0002-9149(68)90117-3. [DOI] [PubMed] [Google Scholar]
  22. TROUT D. L., ESTES E. H., Jr, FRIEDBERG S. J. Titration of free fatty acids of plasma: a study of current methods and a new modification. J Lipid Res. 1960 Apr;1:199–202. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES