Abstract
Osteoclast-activating factor (OAF) is a soluble mediator found in supernates of human peripheral leukocytes which have been cultured with antigens or phytomitogens. OAF is a potent stimulator of osteoclastic resorption of fetal bone in organ culture. The present studies were designed to characterize OAF chemically. Bone resorbing activity from supernates of leukocytes cultured without added plasma was not lost on dialysis using a membrane with a molecular weight cutoff of 3,500, but was lost when heated to 60°C for 30 min. The activity was lost after treatment with trypsin or pronase but not after treatment with ribonuclease or neuraminidase. Papain, which inactivated parathyroid hormone at a concentration of 25 μg/ml, did not inactivate OAF at 250 μg/ml. OAF did not react with an antibody to bovine parathyroid hormone which cross-reacts with human parathyroid hormone. OAF was also distinguished from active metabolites of vitamin D and from prostaglandin by extraction procedures and immunoassay for prostaglandin E2.
When the medium from activated leukocytes cultured with autologous plasma was fractionated by gel filtration on Sephadex, bone resorbing activity eluated both with plasma proteins and in lower molecular weight fractions. However, when medium from leukocytes cultured without added plasma was chromatographed, all the OAF activity was eluted in a sharp low molecular weight peak located between chymotrypsinogen (25,000 molecular weight) and ribonuclease A (13,700 molecular weight). This peak contained about 4% of the total protein originally present in the supernate. Its activity was destroyed by overnight incubation at 37°C at pH 6 or 8, but not at pH 7.2. After incubation at 4°C, the activity was lost at pH 3 or 10, but not at pH 4-9.
The active fraction from Sephadex G-100 was therefore chromatographed at pH 7.2 on DEAE cellulose and carboxymethyl cellulose. The active material was not adsorbed; however, about sevenfold further purification was achieved by removal of contaminants. The material obtained after sequential Sephadex, DEAE and, carboxymethyl cellulose chromatography stimulated resorption of fetal rat bone in culture at concentrations of 0.75-3 μg protein/ml, indicating that this preparation of OAF was nearly as potent as bovine parathyroid hormone in this system.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackers G. K. Analytical gel chromatography of proteins. Adv Protein Chem. 1970;24:343–446. doi: 10.1016/s0065-3233(08)60245-4. [DOI] [PubMed] [Google Scholar]
- Altman L. C., Snyderman R., Oppenheim J. J., Mergenhagen S. E. A human mononuclear leukocyte chemotactic factor: characterization, specificity and kinetics of production by homologous leukocytes. J Immunol. 1973 Mar;110(3):801–810. [PubMed] [Google Scholar]
- Blair A. J., Jr, Hawker C. D., Utiger R. D. Ectopic hyperparathyroidism in a patient with metastatic hypernephroma. Metabolism. 1973 Feb;22(2):147–154. doi: 10.1016/0026-0495(73)90265-5. [DOI] [PubMed] [Google Scholar]
- Cousins R. J., DeLuca H. F., Gray R. W. Metaboism of 25-hydroxycholecalciferol in target and nontarget tissues. Biochemistry. 1970 Sep 15;9(19):3649–3652. doi: 10.1021/bi00821a001. [DOI] [PubMed] [Google Scholar]
- David J. R. Mediators produced by sensitized lymphocytes. Fed Proc. 1971 Nov-Dec;30(6):1730–1735. [PubMed] [Google Scholar]
- Hamilton J. W., Spierto F. W., MacGregor R. R., Cohn D. V. Studies on the biosynthesis in vitro of parathyroid hormone. II. The effect of calcium and magnesium on synthesis of parathyroid hormone isolated from bovine parathyroid tissue and incubation medium. J Biol Chem. 1971 May 25;246(10):3224–3233. [PubMed] [Google Scholar]
- Horton J. E., Raisz L. G., Simmons H. A., Oppenheim J. J., Mergenhagen S. E. Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes. Science. 1972 Sep 1;177(4051):793–795. doi: 10.1126/science.177.4051.793. [DOI] [PubMed] [Google Scholar]
- Klein D. C., Raisz L. G. Prostaglandins: stimulation of bone resorption in tissue culture. Endocrinology. 1970 Jun;86(6):1436–1440. doi: 10.1210/endo-86-6-1436. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levine L., Van Vunakis H. Antigenic activity of prostaglandins. Biochem Biophys Res Commun. 1970 Dec 9;41(5):1171–1177. doi: 10.1016/0006-291x(70)90209-3. [DOI] [PubMed] [Google Scholar]
- RASMUSSEN H. The purification of parathyroid polypeptides. J Biol Chem. 1960 Dec;235:3442–3448. [PubMed] [Google Scholar]
- Raisz L. G., Niemann I. Effect of phosphate, calcium and magnesium on bone resorption and hormonal responses in tissue culture. Endocrinology. 1969 Sep;85(3):446–452. doi: 10.1210/endo-85-3-446. [DOI] [PubMed] [Google Scholar]
- Raisz L. G., Trummel C. L., Holick M. F., DeLuca H. F. 1,25-dihydroxycholecalciferol: a potent stimulator of bone resorption in tissue culture. Science. 1972 Feb 18;175(4023):768–769. doi: 10.1126/science.175.4023.768. [DOI] [PubMed] [Google Scholar]
- Rocklin R. E., Remold H. G., David J. R. Characterization of human migration inhibitory factor (MIF) from antigen-stimulated lymphocytes. Cell Immunol. 1972 Nov;5(3):436–445. doi: 10.1016/0008-8749(72)90070-6. [DOI] [PubMed] [Google Scholar]
- Russell S. W., Rosenau W., Goldberg M. L., Kunitomi G. Purification of human lymphotoxin. J Immunol. 1972 Oct;109(4):784–790. [PubMed] [Google Scholar]
- Snyderman R., Shin H. S., Hausman M. H. A chemotactic factor for mononuclear leukocytes. Proc Soc Exp Biol Med. 1971 Nov;138(2):387–390. doi: 10.3181/00379727-138-35903. [DOI] [PubMed] [Google Scholar]
- Tashjian A. H., Jr, Voelkel E. F., Levine L., Goldhaber P. Evidence that the bone resorption-stimulating factor produced by mouse fibrosarcoma cells is prostaglandin E 2 . A new model for the hypercalcemia of cancer. J Exp Med. 1972 Dec 1;136(6):1329–1343. doi: 10.1084/jem.136.6.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]