Abstract
In this study, native cells of Streptococcus mutans VA-29R and Streptococcus rattus FA-1 displayed significantly higher aminopeptidase activity than did cells of Streptococcus cricetus AHT or Streptococcus sobrinus 6715 toward the nitroanilide derivatives of leucine, alanine, methionine, arginine, and lysine. These differences in cellular aminopeptidase activity led us to investigate the subcellular localization of the aminopeptidase in these mutans group streptococci. Following conversion of native cells to protoplasts by treatment with lysozyme, most of the aminopeptidase activity detected in the native-cell preparations remained associated with the intact protoplasts. After lysis of protoplasts and differential centrifugation, most of the total cellular aminopeptidase activity was recovered with the cytoplasmic fraction. Membrane-associated aminopeptidases represented only minor activities in these mutans group streptococci. Although the four strains showed no differences with respect to a predominant cytoplasmic localization for the aminopeptidase activities, the levels of activity in the cytoplasmic fractions from S. cricetus AHT and S. sobrinus 6715 were significantly lower than those measurable in the corresponding fractions from S. mutans VA-29R and S. rattus FA-1. These results support the conclusion that the differences in aminopeptidase activity expressed by these streptococci reflect quantitative differences rather than differences in enzyme subcellular localization.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson C., Sund M. L., Linder L. Peptide utilization by oral streptococci. Infect Immun. 1984 Feb;43(2):555–560. doi: 10.1128/iai.43.2.555-560.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beckers H. J., van der Hoeven J. S. Growth rates of Actinomyces viscosus and Streptococcus mutans during early colonization of tooth surfaces in gnotobiotic rats. Infect Immun. 1982 Feb;35(2):583–587. doi: 10.1128/iai.35.2.583-587.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beckers H. J., van der Hoeven J. S. The effects of mutual interaction and host diet on the growth rates of the bacteria Actinomyces viscosus and Streptococcus mutans during colonization of tooth surfaces in di-associated gnotobiotic rats. Arch Oral Biol. 1984;29(3):231–236. doi: 10.1016/0003-9969(84)90060-8. [DOI] [PubMed] [Google Scholar]
- Beighton D., Smith K., Hayday H. The growth of bacteria and the production of exoglycosidic enzymes in the dental plaque of macaque monkeys. Arch Oral Biol. 1986;31(12):829–835. doi: 10.1016/0003-9969(86)90137-8. [DOI] [PubMed] [Google Scholar]
- Bunick F. J., Kashket S. Enolases from fluoride-sensitive and fluoride-resistant streptococci. Infect Immun. 1981 Dec;34(3):856–863. doi: 10.1128/iai.34.3.856-863.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chassy B. M. A gentle method for the lysis of oral streptococci. Biochem Biophys Res Commun. 1976 Jan 26;68(2):603–608. doi: 10.1016/0006-291x(76)91188-8. [DOI] [PubMed] [Google Scholar]
- Cho M. I., Holt S. C., Iacono V. J., Pollock J. J. Effects of lysozyme and inorganic anions on the morphology of Streptococcus mutans BHT: electron microscopic examination. J Bacteriol. 1982 Sep;151(3):1498–1507. doi: 10.1128/jb.151.3.1498-1507.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowman R. A., Baron S. S., Fitzgerald R. J., Stuchell R. E., Mandel I. D. Comparative growth responses of oral streptococci on mixed saliva or the separate submandibular and parotid secretions from caries-active and caries-free individuals. J Dent Res. 1983 Sep;62(9):946–951. doi: 10.1177/00220345830620090601. [DOI] [PubMed] [Google Scholar]
- Cowman R. A., Baron S. S. Influence of hydrophobicity on oligopeptide utilization by oral streptococci. J Dent Res. 1990 Dec;69(12):1847–1851. doi: 10.1177/00220345900690121101. [DOI] [PubMed] [Google Scholar]
- Cowman R. A., Fitzgerald R. J., Perrella M. M., Cornell A. H. Human saliva as a nitrogen source for oral streptococci. Caries Res. 1977;11(1):1–8. doi: 10.1159/000260242. [DOI] [PubMed] [Google Scholar]
- Cowman R. A., Perrella M. M., Fitzgerald R. J. Influence of incubation atmosphere on growth and amino acid requirements of Streptococcus mutans. Appl Microbiol. 1974 Jan;27(1):86–92. doi: 10.1128/am.27.1.86-92.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowman R. A., Schaefer S. J., Fitzgerald R. J. Specificity of utilization of human salivary proteins for growth by oral streptococci. Caries Res. 1979;13(4):181–189. doi: 10.1159/000260399. [DOI] [PubMed] [Google Scholar]
- Exterkate F. A. Location of Peptidases Outside and Inside the Membrane of Streptococcus cremoris. Appl Environ Microbiol. 1984 Jan;47(1):177–183. doi: 10.1128/aem.47.1.177-183.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Floderus E., Andersson C., Linder L., Sund M. L. Aminopeptidase activity in strains of oral streptococci. Oral Microbiol Immunol. 1987 Sep;2(3):117–120. doi: 10.1111/j.1399-302x.1987.tb00273.x. [DOI] [PubMed] [Google Scholar]
- Frey J., Röhm K. H. External and internal forms of yeast aminopeptidase II. Eur J Biochem. 1979 Jun;97(1):169–173. doi: 10.1111/j.1432-1033.1979.tb13099.x. [DOI] [PubMed] [Google Scholar]
- Fukasawa K., Hiraoka B. Y., Fukasawa K. M., Harada M. Arylamidase activities specific for proline, tyrosine, and basic amino acid residues in some oral bacteria. J Dent Res. 1982 Jun;61(6):818–820. doi: 10.1177/00220345820610063501. [DOI] [PubMed] [Google Scholar]
- Hiraoka B. Y. Immunochemical properties and intracellular localization of two molecular forms of arginine aminopeptidase in Streptococcus mitis ATCC 9811. Biochim Biophys Acta. 1985 Aug 16;841(2):166–172. [PubMed] [Google Scholar]
- Oya H., Nagatsu T., Kobayashi Y., Takei M. Arylaminopeptidase activities in human cariogenic and non-cariogenic oral bacteria. Arch Oral Biol. 1971 Jun;16(6):675–680. doi: 10.1016/0003-9969(71)90073-2. [DOI] [PubMed] [Google Scholar]
- Parker D. D., Naider F., Becker J. M. Separation of peptide transport and hydrolysis in trimethionine uptake by Saccharomyces cerevisiae. J Bacteriol. 1980 Aug;143(2):1066–1069. doi: 10.1128/jb.143.2.1066-1069.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Payne J. W. The utilization of prolyl peptides by Escherichia coli. Biochem J. 1971 Jun;123(2):255–260. doi: 10.1042/bj1230255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers A. H., Pfennig A. L., Gully N. J., Zilm P. S. Factors affecting peptide catabolism by oral streptococci. Oral Microbiol Immunol. 1991 Apr;6(2):72–75. doi: 10.1111/j.1399-302x.1991.tb00454.x. [DOI] [PubMed] [Google Scholar]
- STONE D. Some aspects of the hydrolysis of proline peptides by a prolineless mutant of Escherichia coli. J Biol Chem. 1953 Jun;202(2):821–827. [PubMed] [Google Scholar]
- Schöller M., Klein J. P., Sommer P., Frank R. Protoplast and cytoplasmic membrane preparations from Streptococcus sanguis and Streptococcus mutans. J Gen Microbiol. 1983 Oct;129(10):3271–3279. doi: 10.1099/00221287-129-10-3271. [DOI] [PubMed] [Google Scholar]
- Siegel J. L., Hurst S. F., Liberman E. S., Coleman S. E., Bleiweis A. S. Mutanolysin-induced spheroplasts of Streptococcus mutants are true protoplasts. Infect Immun. 1981 Feb;31(2):808–815. doi: 10.1128/iai.31.2.808-815.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith K., Beighton D. The effects of the availability of diet on the levels of exoglycosidases in the supragingival plaque of macaque monkeys. J Dent Res. 1986 Nov;65(11):1349–1352. doi: 10.1177/00220345860650111401. [DOI] [PubMed] [Google Scholar]
- Suido H., Nakamura M., Mashimo P. A., Zambon J. J., Genco R. J. Arylaminopeptidase activities of oral bacteria. J Dent Res. 1986 Nov;65(11):1335–1340. doi: 10.1177/00220345860650111101. [DOI] [PubMed] [Google Scholar]
- Thomas T. D., Jarvis B. D., Skipper N. A. Localization of proteinase(s) near the cell surface of Streptococcus lactis. J Bacteriol. 1974 May;118(2):329–333. doi: 10.1128/jb.118.2.329-333.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
