Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1994 Jul;62(7):2901–2907. doi: 10.1128/iai.62.7.2901-2907.1994

Role of antibodies against biotype-specific Vibrio cholerae pili in protection against experimental classical and El Tor cholera.

J Osek 1, G Jonson 1, A M Svennerholm 1, J Holmgren 1
PMCID: PMC302897  PMID: 7911787

Abstract

Vibrio cholerae O1, which exists as two biotypes, classical and El Tor, expresses fimbrial antigens called toxin-coregulated pili (TCP) and mannose-sensitive hemagglutinin (MSHA) pili, respectively. We have raised rabbit antisera and monoclonal antibodies against these fimbrial antigens and prepared Fab fragments which possess specific antibodies directed against the respective fimbrial antigens from these antisera. The protective effect of these antibody preparations was studied in the infant mouse cholera model. Antibodies against TCP were able to protect baby mice against challenge with V. cholerae O1 of the classical but not of the El Tor biotype. Similar but reverse biotype differences in protection against challenge with classical and El Tor vibrios were observed when antibodies against MSHA pili were used. The protective effect of V. cholerae O1 antilipopolysaccharide (anti-LPS) antibodies, both alone and in combination with antifimbrial antibodies, was also evaluated. We showed that antibodies to the LPS component also prevented infections with V. cholerae O1. Moreover, our results indicate that antibodies against TCP or MSHA pili and against LPS cooperate at least additively, and possible even synergistically, in protecting baby mice against challenge with group O1 vibrios. These results indicate that TCP and MSHA pili as well as LPS play an important role in the pathogenesis of experimental cholera. We could also demonstrate that antibacterial immunity preventing colonization is biotype specific. Our results might be used for the generation of new oral cholera vaccines including both TCP and MSHA fimbrial antigens.

Full text

PDF
2901

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apter F. M., Michetti P., Winner L. S., 3rd, Mack J. A., Mekalanos J. J., Neutra M. R. Analysis of the roles of antilipopolysaccharide and anti-cholera toxin immunoglobulin A (IgA) antibodies in protection against Vibrio cholerae and cholera toxin by use of monoclonal IgA antibodies in vivo. Infect Immun. 1993 Dec;61(12):5279–5285. doi: 10.1128/iai.61.12.5279-5285.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Attridge S. R., Rowley D. The role of the flagellum in the adherence of Vibrio cholerae. J Infect Dis. 1983 May;147(5):864–872. doi: 10.1093/infdis/147.5.864. [DOI] [PubMed] [Google Scholar]
  3. Baselski V., Briggs R., Parker C. Intestinal fluid accumulation induced by oral challenge with Vibrio cholerae or cholera toxin in infant mice. Infect Immun. 1977 Mar;15(3):704–712. doi: 10.1128/iai.15.3.704-712.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Clemens J. D., Sack D. A., Harris J. R., Van Loon F., Chakraborty J., Ahmed F., Rao M. R., Khan M. R., Yunus M., Huda N. Field trial of oral cholera vaccines in Bangladesh: results from three-year follow-up. Lancet. 1990 Feb 3;335(8684):270–273. doi: 10.1016/0140-6736(90)90080-o. [DOI] [PubMed] [Google Scholar]
  6. Ehara M., Ishibashi M., Ichinose Y., Iwanaga M., Shimotori S., Naito T. Purification and partial characterization of fimbriae of Vibrio cholerae O1. Vaccine. 1987 Dec;5(4):283–288. doi: 10.1016/0264-410x(87)90153-8. [DOI] [PubMed] [Google Scholar]
  7. Fuerst J. A., Perry J. W. Demonstration of lipopolysaccharide on sheathed flagella of Vibrio cholerae O:1 by protein A-gold immunoelectron microscopy. J Bacteriol. 1988 Apr;170(4):1488–1494. doi: 10.1128/jb.170.4.1488-1494.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hall R. H., Vial P. A., Kaper J. B., Mekalanos J. J., Levine M. M. Morphological studies on fimbriae expressed by Vibrio cholerae 01. Microb Pathog. 1988 Apr;4(4):257–265. doi: 10.1016/0882-4010(88)90086-1. [DOI] [PubMed] [Google Scholar]
  9. Hanne L. F., Finkelstein R. A. Characterization and distribution of the hemagglutinins produced by Vibrio cholerae. Infect Immun. 1982 Apr;36(1):209–214. doi: 10.1128/iai.36.1.209-214.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herrington D. A., Hall R. H., Losonsky G., Mekalanos J. J., Taylor R. K., Levine M. M. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med. 1988 Oct 1;168(4):1487–1492. doi: 10.1084/jem.168.4.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holmgren J. Actions of cholera toxin and the prevention and treatment of cholera. Nature. 1981 Jul 30;292(5822):413–417. doi: 10.1038/292413a0. [DOI] [PubMed] [Google Scholar]
  12. Holmgren J., Svennerholm A. M., Lönnroth I., Fall-Persson M., Markman B., Lundbeck H. Development of improved cholera vaccine based on subunit toxoid. Nature. 1977 Oct 13;269(5629):602–604. doi: 10.1038/269602a0. [DOI] [PubMed] [Google Scholar]
  13. Iwanaga M., Nakasone N., Yamashiro T., Higa N. Pili of vibrio cholerae widely distributed in serogroup O1 strains. Microbiol Immunol. 1993;37(1):23–28. doi: 10.1111/j.1348-0421.1993.tb03174.x. [DOI] [PubMed] [Google Scholar]
  14. Iwanaga M., Yamamoto K., Higa N., Ichinose Y., Nakasone N., Tanabe M. Culture conditions for stimulating cholera toxin production by Vibrio cholerae O1 El Tor. Microbiol Immunol. 1986;30(11):1075–1083. doi: 10.1111/j.1348-0421.1986.tb03037.x. [DOI] [PubMed] [Google Scholar]
  15. Jacob A., Sinha V. B., Sahib M. K., Srivastava R., Kaper J. B., Srivastava B. S. Identification of a 33 kDa antigen associated with an adhesive and colonizing strain of Vibrio cholerae El Tor and its role in protection. Vaccine. 1993;11(3):376–382. doi: 10.1016/0264-410x(93)90203-a. [DOI] [PubMed] [Google Scholar]
  16. Jonson G., Holmgren J., Svennerholm A. M. Analysis of expression of toxin-coregulated pili in classical and El Tor Vibrio cholerae O1 in vitro and in vivo. Infect Immun. 1992 Oct;60(10):4278–4284. doi: 10.1128/iai.60.10.4278-4284.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jonson G., Holmgren J., Svennerholm A. M. Epitope differences in toxin-coregulated pili produced by classical and El Tor Vibrio cholerae O1. Microb Pathog. 1991 Sep;11(3):179–188. doi: 10.1016/0882-4010(91)90048-f. [DOI] [PubMed] [Google Scholar]
  18. Jonson G., Holmgren J., Svennerholm A. M. Identification of a mannose-binding pilus on Vibrio cholerae El Tor. Microb Pathog. 1991 Dec;11(6):433–441. doi: 10.1016/0882-4010(91)90039-d. [DOI] [PubMed] [Google Scholar]
  19. Jonson G., Sanchez J., Svennerholm A. M. Expression and detection of different biotype-associated cell-bound haemagglutinins of Vibrio cholerae O1. J Gen Microbiol. 1989 Jan;135(1):111–120. doi: 10.1099/00221287-135-1-111. [DOI] [PubMed] [Google Scholar]
  20. Osek J., Svennerholm A. M., Holmgren J. Protection against Vibrio cholerae El Tor infection by specific antibodies against mannose-binding hemagglutinin pili. Infect Immun. 1992 Nov;60(11):4961–4964. doi: 10.1128/iai.60.11.4961-4964.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pierce N. F., Cray W. C., Jr, Sacci J. B., Jr Oral immunization of dogs with purified cholera toxin, crude cholera toxin, or B subunit: evidence for synergistic protection by antitoxic and antibacterial mechanisms. Infect Immun. 1982 Aug;37(2):687–694. doi: 10.1128/iai.37.2.687-694.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sengupta D. K., Sengupta T. K., Ghose A. C. Major outer membrane proteins of Vibrio cholerae and their role in induction of protective immunity through inhibition of intestinal colonization. Infect Immun. 1992 Nov;60(11):4848–4855. doi: 10.1128/iai.60.11.4848-4855.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sharma D. P., Attridge S., Hackett J., Rowley D. Nonlipopolysaccharide protective antigens shared by classical and El Tor biotypes of Vibrio cholerae. J Infect Dis. 1987 Apr;155(4):716–723. doi: 10.1093/infdis/155.4.716. [DOI] [PubMed] [Google Scholar]
  25. Sharma D. P., Thomas C., Hall R. H., Levine M. M., Attridge S. R. Significance of toxin-coregulated pili as protective antigens of Vibrio cholerae in the infant mouse model. Vaccine. 1989 Oct;7(5):451–456. doi: 10.1016/0264-410x(89)90161-8. [DOI] [PubMed] [Google Scholar]
  26. Sinha V. B., Jacob A., Srivastava R., Kaper J. B., Srivastava B. S. Identification of the flagellar antigens of Vibrio cholerae El Tor and their role in protection. Vaccine. 1993;11(3):372–375. doi: 10.1016/0264-410x(93)90202-9. [DOI] [PubMed] [Google Scholar]
  27. Sun D. X., Mekalanos J. J., Taylor R. K. Antibodies directed against the toxin-coregulated pilus isolated from Vibrio cholerae provide protection in the infant mouse experimental cholera model. J Infect Dis. 1990 Jun;161(6):1231–1236. doi: 10.1093/infdis/161.6.1231. [DOI] [PubMed] [Google Scholar]
  28. Svennerholm A. M. Experimental studies on cholera immunization. 4. The antibody response to formalinized Vibrio cholerae and purified endotoxin with special reference to protective capacity. Int Arch Allergy Appl Immunol. 1975;49(4):434–452. [PubMed] [Google Scholar]
  29. Svennerholm A. M., Holmgren J. Synergistic protective effect in rabbits of immunization with Vibrio cholerae lipopolysaccharide and toxin/toxoid. Infect Immun. 1976 Mar;13(3):735–740. doi: 10.1128/iai.13.3.735-740.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Svennerholm A. M., Johnson G., Yan C. A method for studies of an El Tor-associated antigen of Vibrio cholerae O1. FEMS Microbiol Lett. 1991 Apr 15;63(2-3):179–185. doi: 10.1016/0378-1097(91)90082-l. [DOI] [PubMed] [Google Scholar]
  31. Taylor R. K., Miller V. L., Furlong D. B., Mekalanos J. J. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A. 1987 May;84(9):2833–2837. doi: 10.1073/pnas.84.9.2833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. de StGroth S. F., Scheidegger D. Production of monoclonal antibodies: strategy and tactics. J Immunol Methods. 1980;35(1-2):1–21. doi: 10.1016/0022-1759(80)90146-5. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES