Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1994 Jul;62(7):2958–2962. doi: 10.1128/iai.62.7.2958-2962.1994

Protein synthesis is required for expression of anthrax lethal toxin cytotoxicity.

R Bhatnagar 1, A M Friedlander 1
PMCID: PMC302904  PMID: 8005682

Abstract

Anthrax lethal toxin, which is composed of two proteins, i.e., protective antigen and lethal factor, is cytolytic to mouse peritoneal macrophages and the macrophage-like cell line J774A.1. After exposure of cells to lethal toxin, inhibition of protein synthesis occurred only slightly before the onset of cytolysis. Thus, cell death did not appear to be due to inhibition of protein synthesis. However, prior treatment of J774A.1 cells with cycloheximide or puromycin, which inhibited protein synthesis, protected them completely against lethal toxin-induced cytolysis, which suggested that continuous protein synthesis is required for the expression of lethal toxin activity. Inhibition of protein synthesis had no appreciable effect on the binding of protective antigen to the cell surface receptor or on proteolytic cleavage of surface-bound protective antigen. Furthermore, inhibition of protein synthesis did not alter the uptake of toxin, which suggested that protein synthesis is required at a later stage of the intoxication process. The protection provided by inhibition of protein synthesis was effective, even up to 1 h after exposure to anthrax lethal toxin. The increased uptake of calcium observed in cells exposed to lethal toxin did not occur when they were protected by blocking protein synthesis. Identifying the protein(s) synthesized during the intoxication process may help to understand the mechanism of cell death produced by anthrax lethal toxin.

Full text

PDF
2958

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEALL F. A., TAYLOR M. J., THORNE C. B. Rapid lethal effect in rats of a third component found upon fractionating the toxin of Bacillus anthracis. J Bacteriol. 1962 Jun;83:1274–1280. doi: 10.1128/jb.83.6.1274-1280.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhatnagar R., Singh Y., Leppla S. H., Friedlander A. M. Calcium is required for the expression of anthrax lethal toxin activity in the macrophagelike cell line J774A.1. Infect Immun. 1989 Jul;57(7):2107–2114. doi: 10.1128/iai.57.7.2107-2114.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Endo Y., Mitsui K., Motizuki M., Tsurugi K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem. 1987 Apr 25;262(12):5908–5912. [PubMed] [Google Scholar]
  4. Endo Y., Tsurugi K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem. 1987 Jun 15;262(17):8128–8130. [PubMed] [Google Scholar]
  5. Escuyer V., Collier R. J. Anthrax protective antigen interacts with a specific receptor on the surface of CHO-K1 cells. Infect Immun. 1991 Oct;59(10):3381–3386. doi: 10.1128/iai.59.10.3381-3386.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Friedlander A. M., Bhatnagar R., Leppla S. H., Johnson L., Singh Y. Characterization of macrophage sensitivity and resistance to anthrax lethal toxin. Infect Immun. 1993 Jan;61(1):245–252. doi: 10.1128/iai.61.1.245-252.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Friedlander A. M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem. 1986 Jun 5;261(16):7123–7126. [PubMed] [Google Scholar]
  8. Gordon V. M., Young W. W., Jr, Lechler S. M., Gray M. C., Leppla S. H., Hewlett E. L. Adenylate cyclase toxins from Bacillus anthracis and Bordetella pertussis. Different processes for interaction with and entry into target cells. J Biol Chem. 1989 Sep 5;264(25):14792–14796. [PubMed] [Google Scholar]
  9. Hagmann J., Fishman P. H. Inhibitors of protein synthesis block action of cholera toxin. Biochem Biophys Res Commun. 1981 Feb 12;98(3):677–684. doi: 10.1016/0006-291x(81)91167-0. [DOI] [PubMed] [Google Scholar]
  10. Hanna P. C., Kochi S., Collier R. J. Biochemical and physiological changes induced by anthrax lethal toxin in J774 macrophage-like cells. Mol Biol Cell. 1992 Nov;3(11):1269–1277. doi: 10.1091/mbc.3.11.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haselkorn R., Rothman-Denes L. B. Protein synthesis. Annu Rev Biochem. 1973;42:397–438. doi: 10.1146/annurev.bi.42.070173.002145. [DOI] [PubMed] [Google Scholar]
  12. Klimpel K. R., Molloy S. S., Thomas G., Leppla S. H. Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10277–10281. doi: 10.1073/pnas.89.21.10277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Leppla S. H. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci U S A. 1982 May;79(10):3162–3166. doi: 10.1073/pnas.79.10.3162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leppla S. H. Production and purification of anthrax toxin. Methods Enzymol. 1988;165:103–116. doi: 10.1016/s0076-6879(88)65019-1. [DOI] [PubMed] [Google Scholar]
  16. McConkey D. J., Hartzell P., Duddy S. K., Håkansson H., Orrenius S. 2,3,7,8-Tetrachlorodibenzo-p-dioxin kills immature thymocytes by Ca2+-mediated endonuclease activation. Science. 1988 Oct 14;242(4876):256–259. doi: 10.1126/science.3262923. [DOI] [PubMed] [Google Scholar]
  17. Novak J. M., Stein M. P., Little S. F., Leppla S. H., Friedlander A. M. Functional characterization of protease-treated Bacillus anthracis protective antigen. J Biol Chem. 1992 Aug 25;267(24):17186–17193. [PubMed] [Google Scholar]
  18. Olsnes S., Sandvig K. How protein toxins enter and kill cells. Cancer Treat Res. 1988;37:39–73. doi: 10.1007/978-1-4613-1083-9_4. [DOI] [PubMed] [Google Scholar]
  19. Pestka S. Inhibitors of ribosome functions. Annu Rev Microbiol. 1971;25:487–562. doi: 10.1146/annurev.mi.25.100171.002415. [DOI] [PubMed] [Google Scholar]
  20. STANLEY J. L., SMITH H. Purification of factor I and recognition of a third factor of the anthrax toxin. J Gen Microbiol. 1961 Sep;26:49–63. doi: 10.1099/00221287-26-1-49. [DOI] [PubMed] [Google Scholar]
  21. Sandvig K., Tønnessen T. I., Olsnes S. Ability of inhibitors of glycosylation and protein synthesis to sensitize cells to abrin, ricin, Shigella toxin, and Pseudomonas toxin. Cancer Res. 1986 Dec;46(12 Pt 1):6418–6422. [PubMed] [Google Scholar]
  22. Singh Y., Leppla S. H., Bhatnagar R., Friedlander A. M. Internalization and processing of Bacillus anthracis lethal toxin by toxin-sensitive and -resistant cells. J Biol Chem. 1989 Jul 5;264(19):11099–11102. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES