Abstract
Mice were exposed to the protozoan parasite Toxoplasma gondii in utero or were infected as neonates in order to identify and characterize resistance mechanisms that function protectively during the first weeks after birth. About one-half of the mice born of mothers fed T. gondii cysts at 11 days of gestation survived to weaning age or beyond. No effect of major histocompatibility complex (MHC) haplotype on early survival was observed in a group of backcross progeny; however, long-term survival was strongly dependent on MHC haplotype. The ability of mice infected as neonates to survive until weaning was found to depend on gamma interferon and on Thy-1+ cells but not on CD4+ or CD8+ cells. Mice that survived to maturity after infection as neonates were slightly more resistant to challenge with virulent T. gondii parasites than were sham-infected controls but were less resistant than were mice infected as adults. Together the results indicate the following. (i) Mice congenitally infected with T. gondii have a gamma interferon-dependent mechanism of early resistance that involves Thy-1+ cells but not CD4+ or CD8+ cells. (ii) This mechanism is not under MHC-linked genetic control. (iii) Mice that exhibit long-term survival after congenital infection acquire a modest degree of protection against reinfection with virulent organisms. (iv) The extent of long-term survival of congenitally infected neonates, like that in mice infected as adults, is influenced by MHC genes, presumably via MHC-restricted CD4+ and/or CD8+ cells.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Araujo F. G. Depletion of L3T4+ (CD4+) T lymphocytes prevents development of resistance to Toxoplasma gondii in mice. Infect Immun. 1991 May;59(5):1614–1619. doi: 10.1128/iai.59.5.1614-1619.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BEVERLEY J. K. Congenital transmission of toxoplasmosis through successive generations of mice. Nature. 1959 May 9;183(4671):1348–1349. doi: 10.1038/1831348a0. [DOI] [PubMed] [Google Scholar]
- Brown C. R., McLeod R. Class I MHC genes and CD8+ T cells determine cyst number in Toxoplasma gondii infection. J Immunol. 1990 Nov 15;145(10):3438–3441. [PubMed] [Google Scholar]
- Burgio G. R., Ugazio A. G., Notarangelo L. D. Immunology of the neonate. Curr Opin Immunol. 1989;2(5):770–777. doi: 10.1016/0952-7915(90)90049-m. [DOI] [PubMed] [Google Scholar]
- Filice G. A. The immunologic paralysis of congenital infection. J Lab Clin Med. 1990 Nov;116(5):610–612. [PubMed] [Google Scholar]
- Gazzinelli R. T., Hakim F. T., Hieny S., Shearer G. M., Sher A. Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-gamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine. J Immunol. 1991 Jan 1;146(1):286–292. [PubMed] [Google Scholar]
- Granberg C., Hirvonen T. Cell-mediated lympholysis by fetal and neonatal lymphocytes in sheep and man. Cell Immunol. 1980 Apr;51(1):13–22. doi: 10.1016/0008-8749(80)90233-6. [DOI] [PubMed] [Google Scholar]
- Jamieson B. D., Ahmed R. T-cell tolerance: exposure to virus in utero does not cause a permanent deletion of specific T cells. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2265–2268. doi: 10.1073/pnas.85.7.2265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson L. L. A protective role for endogenous tumor necrosis factor in Toxoplasma gondii infection. Infect Immun. 1992 May;60(5):1979–1983. doi: 10.1128/iai.60.5.1979-1983.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson L. L. Antigraft responses to the H-28c antigen by B6 and B6D2F1 mice. Immunogenetics. 1988;27(3):159–166. doi: 10.1007/BF00346581. [DOI] [PubMed] [Google Scholar]
- Johnson L. L. SCID mouse models of acute and relapsing chronic Toxoplasma gondii infections. Infect Immun. 1992 Sep;60(9):3719–3724. doi: 10.1128/iai.60.9.3719-3724.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson L. L., VanderVegt F. P., Havell E. A. Gamma interferon-dependent temporary resistance to acute Toxoplasma gondii infection independent of CD4+ or CD8+ lymphocytes. Infect Immun. 1993 Dec;61(12):5174–5180. doi: 10.1128/iai.61.12.5174-5180.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones T. C., Erb P. H-2 complex-linked resistance in murine toxoplasmosis. J Infect Dis. 1985 Apr;151(4):739–740. doi: 10.1093/infdis/151.4.739. [DOI] [PubMed] [Google Scholar]
- Mauracher C. A., Mitchell L. A., Tingle A. J. Selective tolerance to the E1 protein of rubella virus in congenital rubella syndrome. J Immunol. 1993 Aug 15;151(4):2041–2049. [PubMed] [Google Scholar]
- McLeod R., Mack D. G., Boyer K., Mets M., Roizen N., Swisher C., Patel D., Beckmann E., Vitullo D., Johnson D. Phenotypes and functions of lymphocytes in congenital toxoplasmosis. J Lab Clin Med. 1990 Nov;116(5):623–635. [PubMed] [Google Scholar]
- Nagasawa H., Manabe T., Maekawa Y., Oka M., Himeno K. Role of L3T4+ and Lyt-2+ T cell subsets in protective immune responses of mice against infection with a low or high virulent strain of Toxoplasma gondii. Microbiol Immunol. 1991;35(3):215–222. doi: 10.1111/j.1348-0421.1991.tb01550.x. [DOI] [PubMed] [Google Scholar]
- Parker S. J., Roberts C. W., Alexander J. CD8+ T cells are the major lymphocyte subpopulation involved in the protective immune response to Toxoplasma gondii in mice. Clin Exp Immunol. 1991 May;84(2):207–212. doi: 10.1111/j.1365-2249.1991.tb08150.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuit K. E., Homisch L. Inefficient in vivo neutrophil migration in neonatal rats. J Leukoc Biol. 1984 Jun;35(6):583–586. doi: 10.1002/jlb.35.6.583. [DOI] [PubMed] [Google Scholar]
- Sher A., Oswald I. P., Hieny S., Gazzinelli R. T. Toxoplasma gondii induces a T-independent IFN-gamma response in natural killer cells that requires both adherent accessory cells and tumor necrosis factor-alpha. J Immunol. 1993 May 1;150(9):3982–3989. [PubMed] [Google Scholar]
- Suzuki Y., Joh K., Orellana M. A., Conley F. K., Remington J. S. A gene(s) within the H-2D region determines the development of toxoplasmic encephalitis in mice. Immunology. 1991 Dec;74(4):732–739. [PMC free article] [PubMed] [Google Scholar]
- Suzuki Y., Orellana M. A., Schreiber R. D., Remington J. S. Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science. 1988 Apr 22;240(4851):516–518. doi: 10.1126/science.3128869. [DOI] [PubMed] [Google Scholar]
- Suzuki Y., Remington J. S. Dual regulation of resistance against Toxoplasma gondii infection by Lyt-2+ and Lyt-1+, L3T4+ T cells in mice. J Immunol. 1988 Jun 1;140(11):3943–3946. [PubMed] [Google Scholar]
- Toivanen P., Uksila J., Leino A., Lassila O., Hirvonen T., Ruuskanen O. Development of mitogen responding T cells and natural killer cells in the human fetus. Immunol Rev. 1981;57:89–105. doi: 10.1111/j.1600-065x.1981.tb00443.x. [DOI] [PubMed] [Google Scholar]
- Wilson C. B., Desmonts G., Couvreur J., Remington J. S. Lymphocyte transformation in the diagnosis of congenital toxoplasma infection. N Engl J Med. 1980 Apr 3;302(14):785–788. doi: 10.1056/NEJM198004033021406. [DOI] [PubMed] [Google Scholar]
- Wilson C. B., Westall J., Johnston L., Lewis D. B., Dower S. K., Alpert A. R. Decreased production of interferon-gamma by human neonatal cells. Intrinsic and regulatory deficiencies. J Clin Invest. 1986 Mar;77(3):860–867. doi: 10.1172/JCI112383. [DOI] [PMC free article] [PubMed] [Google Scholar]
