Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1994 Aug;62(8):3184–3188. doi: 10.1128/iai.62.8.3184-3188.1994

Interaction of the two components of leukocidin from Staphylococcus aureus with human polymorphonuclear leukocyte membranes: sequential binding and subsequent activation.

D A Colin 1, I Mazurier 1, S Sire 1, V Finck-Barbançon 1
PMCID: PMC302944  PMID: 8039887

Abstract

The sequential interaction between the two components S and F of leukocidin from Staphylococcus aureus and the membrane of human polymorphonuclear neutrophils has been investigated in the presence of 1 mM Ca2+. With 125I-labeled components, it has been shown that binding of the F component occurred only after binding of the S component. The kinetic constants of binding of both components were not statistically different (Kd, approximately 5 nM; Bm, approximately 35,000 molecules per cell), and both Hill coefficients were 1. The application of increasing concentrations of leukocidin provoked a dose-dependent secretion of the granule content, as determined by hexosaminidase and lysozyme activity measurements. Furthermore, the separate perfusion of S and F components on human polymorphonuclear neutrophils deposited on a filter induced secretion of the granules content only when the perfusion of the S component preceded that of the F component. We conclude, therefore, that (i) S-component binding is a prerequisite for F-component binding and for subsequent activation of polymorphonuclear neutrophils and (ii) there is a specific binding site for the S component in the plasma membrane.

Full text

PDF
3184

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bainton D. F. Sequential degranulation of the two types of polymorphonuclear leukocyte granules during phagocytosis of microorganisms. J Cell Biol. 1973 Aug;58(2):249–264. doi: 10.1083/jcb.58.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrowman M. M., Cockcroft S., Gomperts B. D. Differential control of azurophilic and specific granule exocytosis in Sendai-virus-permeabilized rabbit neutrophils. J Physiol. 1987 Feb;383:115–124. doi: 10.1113/jphysiol.1987.sp016399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cockcroft S., Bennett J. P., Gomperts B. D. The dependence on Ca2+ of phosphatidylinositol breakdown and enzyme secretion in rabbit neutrophils stimulated by formylmethionyl-leucylphenylalanine or ionomycin. Biochem J. 1981 Dec 15;200(3):501–508. doi: 10.1042/bj2000501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cooney J., Kienle Z., Foster T. J., O'Toole P. W. The gamma-hemolysin locus of Staphylococcus aureus comprises three linked genes, two of which are identical to the genes for the F and S components of leukocidin. Infect Immun. 1993 Feb;61(2):768–771. doi: 10.1128/iai.61.2.768-771.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Finck-Barbançon V., Duportail G., Meunier O., Colin D. A. Pore formation by a two-component leukocidin from Staphylococcus aureus within the membrane of human polymorphonuclear leukocytes. Biochim Biophys Acta. 1993 Oct 20;1182(3):275–282. doi: 10.1016/0925-4439(93)90069-d. [DOI] [PubMed] [Google Scholar]
  6. Finck-Barbançon V., Prévost G., Piémont Y. Improved purification of leukocidin from Staphylococcus aureus and toxin distribution among hospital strains. Res Microbiol. 1991 Jan;142(1):75–85. doi: 10.1016/0923-2508(91)90099-v. [DOI] [PubMed] [Google Scholar]
  7. Hensler T., König B., Prévost G., Piémont Y., Köller M., König W. Leukotriene B4 generation and DNA fragmentation induced by leukocidin from Staphylococcus aureus: protective role of granulocyte-macrophage colony-stimulating factor (GM-CSF) and G-CSF for human neutrophils. Infect Immun. 1994 Jun;62(6):2529–2535. doi: 10.1128/iai.62.6.2529-2535.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lew P. D., Monod A., Waldvogel F. A., Dewald B., Baggiolini M., Pozzan T. Quantitative analysis of the cytosolic free calcium dependency of exocytosis from three subcellular compartments in intact human neutrophils. J Cell Biol. 1986 Jun;102(6):2197–2204. doi: 10.1083/jcb.102.6.2197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Niessen H. W., Verhoeven A. J. Differential up-regulation of specific and azurophilic granule membrane markers in electropermeabilized neutrophils. Cell Signal. 1992 Sep;4(5):501–509. doi: 10.1016/0898-6568(92)90019-5. [DOI] [PubMed] [Google Scholar]
  10. Noda M., Hirayama T., Kato I., Matsuda F. Crystallization and properties of staphylococcal leukocidin. Biochim Biophys Acta. 1980 Nov 17;633(1):33–44. doi: 10.1016/0304-4165(80)90035-5. [DOI] [PubMed] [Google Scholar]
  11. Noda M., Kato I., Matsuda F., Hirayama T. Mode of action of staphylococcal leukocidin: relationship between binding of 125I-labeled S and F components of leukocidin to rabbit polymorphonuclear leukocytes and leukocidin activity. Infect Immun. 1981 Nov;34(2):362–367. doi: 10.1128/iai.34.2.362-367.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. ROSA U., SCASSELLATI G. A., PENNISI F. LABELLING OF HUMAN FIBRINOGEN WITH 131-I BY ELECTROLYTIC IODINATION. Biochim Biophys Acta. 1964 Jun 8;86:519–526. doi: 10.1016/0304-4165(64)90091-1. [DOI] [PubMed] [Google Scholar]
  13. Rahman A., Izaki K., Kato I., Kamio Y. Nucleotide sequence of leukocidin S-component gene (lukS) from methicillin resistant Staphylococcus aureus. Biochem Biophys Res Commun. 1991 Nov 27;181(1):138–144. doi: 10.1016/s0006-291x(05)81392-0. [DOI] [PubMed] [Google Scholar]
  14. Rahman A., Nariya H., Izaki K., Kato I., Kamio Y. Molecular cloning and nucleotide sequence of leukocidin F-component gene (lukF) from methicillin resistant Staphylococcus aureus. Biochem Biophys Res Commun. 1992 Apr 30;184(2):640–646. doi: 10.1016/0006-291x(92)90637-z. [DOI] [PubMed] [Google Scholar]
  15. Supersac G., Prevost G., Piemont Y. Sequencing of leucocidin R from Staphylococcus aureus P83 suggests that staphylococcal leucocidins and gamma-hemolysin are members of a single, two-component family of toxins. Infect Immun. 1993 Feb;61(2):580–587. doi: 10.1128/iai.61.2.580-587.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. WOODIN A. M. Fractionation of a leucocidin from Staphylococcus aureus. Biochem J. 1959 Oct;73:225–237. doi: 10.1042/bj0730225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. WOODIN A. M. Purification of the two components of leucocidin from Staphylococcus aureus. Biochem J. 1960 Apr;75:158–165. doi: 10.1042/bj0750158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Woodin A. M. Adenylate cyclase and the function of cyclic adenosine 3':5'-monophosphate in the leucocidin-treated leucocyte. Biochim Biophys Acta. 1972 Dec 29;286(2):406–415. doi: 10.1016/0304-4165(72)90277-2. [DOI] [PubMed] [Google Scholar]
  19. Woodin A. M., Wieneke A. A. The participation of phospholipids in the interaction of leucocidin and the cell membrane of the polymorphonuclear leucocyte. Biochem J. 1967 Dec;105(3):1029–1038. doi: 10.1042/bj1051029. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES