Abstract
Lipopolysaccharides (LPS) of five strains of the human and animal pathogen Campylobacter fetus were electrophoretically and chemically characterized. Analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that all the strains produced smooth-form LPS with O side chains of relatively constant chain length. Upon extraction, LPS partitioned into both the water and phenol phases of phenol-water extracts, which showed that two chemical species of LPS were present in each C. fetus strain. Constituents common to all the LPS, though differing in molar ratios, were L-rhamnose, L-fucose, D-mannose, D-glucose, D-galactose, L-glycero-D-manno-heptose, and D-glycero-D-manno-heptose. L-Acofriose (3-O-methyl-L-rhamnose) was present in only two of the C. fetus strains. On the basis of these differences, it was possible to distinguish between LPS from strains of different serotypes and biotypes. Furthermore, chemical analysis indicated that the phenol phase LPS had a lower level of substitution by certain neutral sugars than did water phase LPS. N-Acetylneuraminic (sialic) acid and D-galactosamine were present in all the C. fetus LPS. Constituents normally found in the core and lipid A regions of LPS, 3-deoxy-D-manno-2-octulosonic acid, D-glucosamine, ethanolamine and its phosphorylated derivatives, and fatty acids [14:0, 16:0 14:0(3-OH), and 16:0(3-OH)] were detected. Unlike Campylobacter jejuni, in which 2,3-diamino-2,3-dideoxy-D-glucose occurs as a constituent of the lipid A backbone, this amino sugar was absent from C. fetus LPS, indicating major structural differences in the lipid A's of these species.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aspinall G. O., McDonald A. G., Raju T. S., Pang H., Moran A. P., Penner J. L. Chemical structures of the core regions of Campylobacter jejuni serotypes O:1, O:4, O:23, and O:36 lipopolysaccharides. Eur J Biochem. 1993 May 1;213(3):1017–1027. doi: 10.1111/j.1432-1033.1993.tb17849.x. [DOI] [PubMed] [Google Scholar]
- BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
- Berg R. L., Jutila J. W., Firehammer B. D. A revised classification of Vibrio fetus. Am J Vet Res. 1971 Jan;32(1):11–22. [PubMed] [Google Scholar]
- Björndal H., Lindberg B., Nimmich W. Structural studies on the lipopolysaccharide from Klebsiella K73-O10. I. Methylation analysis, identification and location of 3-O-methyl-L-rhamnose. Acta Chem Scand. 1970;24(9):3414–3415. doi: 10.3891/acta.chem.scand.24-3414. [DOI] [PubMed] [Google Scholar]
- Blaser M. J., Pei Z. Pathogenesis of Campylobacter fetus infections: critical role of high-molecular-weight S-layer proteins in virulence. J Infect Dis. 1993 Feb;167(2):372–377. doi: 10.1093/infdis/167.2.372. [DOI] [PubMed] [Google Scholar]
- Blaser M. J., Smith P. F., Hopkins J. A., Heinzer I., Bryner J. H., Wang W. L. Pathogenesis of Campylobacter fetus infections: serum resistance associated with high-molecular-weight surface proteins. J Infect Dis. 1987 Apr;155(4):696–706. doi: 10.1093/infdis/155.4.696. [DOI] [PubMed] [Google Scholar]
- Bokkenheuser V. Vibrio fetus infection in man. I. Ten new cases and some epidemiologic observations. Am J Epidemiol. 1970 Apr;91(4):400–409. doi: 10.1093/oxfordjournals.aje.a121150. [DOI] [PubMed] [Google Scholar]
- Chart H., Shaw D. H., Ishiguro E. E., Trust T. J. Structural and immunochemical homogeneity of Aeromonas salmonicida lipopolysaccharide. J Bacteriol. 1984 Apr;158(1):16–22. doi: 10.1128/jb.158.1.16-22.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dooley J. S., Lallier R., Shaw D. H., Trust T. J. Electrophoretic and immunochemical analyses of the lipopolysaccharides from various strains of Aeromonas hydrophila. J Bacteriol. 1985 Oct;164(1):263–269. doi: 10.1128/jb.164.1.263-269.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dzau V. J., Schur P. H., Weinstein L. Vibrio fetus endocarditis in a patient with systemic lupus erythematosus. Am J Med Sci. 1976 Nov-Dec;272(3):331–334. doi: 10.1097/00000441-197611000-00010. [DOI] [PubMed] [Google Scholar]
- Fogg G. C., Yang L. Y., Wang E., Blaser M. J. Surface array proteins of Campylobacter fetus block lectin-mediated binding to type A lipopolysaccharide. Infect Immun. 1990 Sep;58(9):2738–2744. doi: 10.1128/iai.58.9.2738-2744.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gamian A., Romanowska E., Dabrowski U., Dabrowski J. Structure of the O-specific, sialic acid containing polysaccharide chain and its linkage to the core region in lipopolysaccharide from Hafnia alvei strain 2 as elucidated by chemical methods, gas-liquid chromatography/mass spectrometry, and 1H NMR spectroscopy. Biochemistry. 1991 May 21;30(20):5032–5038. doi: 10.1021/bi00234a027. [DOI] [PubMed] [Google Scholar]
- Gamian A., Romanowska E., Ulrich J., Defaye J. The structure of the sialic acid-containing Escherichia coli O104 O-specific polysaccharide and its linkage to the core region in lipopolysaccharide. Carbohydr Res. 1992 Dec 15;236:195–208. doi: 10.1016/0008-6215(92)85016-s. [DOI] [PubMed] [Google Scholar]
- Guerrant R. L., Lahita R. G., Winn W. C., Jr, Roberts R. B. Campylobacteriosis in man: pathogenic mechanisms and review of 91 bloodstream infections. Am J Med. 1978 Oct;65(4):584–592. doi: 10.1016/0002-9343(78)90845-8. [DOI] [PubMed] [Google Scholar]
- Hitchcock P. J., Brown T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol. 1983 Apr;154(1):269–277. doi: 10.1128/jb.154.1.269-277.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kedzierska B. N-Acetylneuraminic acid: a constituent of the lipopolysaccharide of Salmonella toucra. Eur J Biochem. 1978 Nov 15;91(2):545–552. doi: 10.1111/j.1432-1033.1978.tb12708.x. [DOI] [PubMed] [Google Scholar]
- Kosunen T. U. Serotyping of Campylobacter fetus subsp. fetus and C. fetus subsp. venerealis by passive hemagglutination technique based on soluble autoclaved antigens. Acta Pathol Microbiol Immunol Scand B. 1986 Aug;94(4):245–249. doi: 10.1111/j.1699-0463.1986.tb03048.x. [DOI] [PubMed] [Google Scholar]
- Krauss J. H., Himmelspach K., Reuter G., Schauer R., Mayer H. Structural analysis of a novel sialic-acid-containing trisaccharide from Rhodobacter capsulatus 37b4 lipopolysaccharide. Eur J Biochem. 1992 Feb 15;204(1):217–223. doi: 10.1111/j.1432-1033.1992.tb16627.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROBERTS N. R., LEINER K. Y., WU M. L., FARR A. L. The quantitative histochemistry of brain. I. Chemical methods. J Biol Chem. 1954 Mar;207(1):1–17. [PubMed] [Google Scholar]
- Logan S. M., Trust T. J. Structural and antigenic heterogeneity of lipopolysaccharides of Campylobacter jejuni and Campylobacter coli. Infect Immun. 1984 Jul;45(1):210–216. doi: 10.1128/iai.45.1.210-216.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moran A. P., Helander I. M., Kosunen T. U. Compositional analysis of Helicobacter pylori rough-form lipopolysaccharides. J Bacteriol. 1992 Feb;174(4):1370–1377. doi: 10.1128/jb.174.4.1370-1377.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moran A. P., Rietschel E. T., Kosunen T. U., Zähringer U. Chemical characterization of Campylobacter jejuni lipopolysaccharides containing N-acetylneuraminic acid and 2,3-diamino-2,3-dideoxy-D-glucose. J Bacteriol. 1991 Jan;173(2):618–626. doi: 10.1128/jb.173.2.618-626.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moran A. P., Zähringer U., Seydel U., Scholz D., Stütz P., Rietschel E. T. Structural analysis of the lipid A component of Campylobacter jejuni CCUG 10936 (serotype O:2) lipopolysaccharide. Description of a lipid A containing a hybrid backbone of 2-amino-2-deoxy-D-glucose and 2,3-diamino-2,3-dideoxy-D-glucose. Eur J Biochem. 1991 Jun 1;198(2):459–469. doi: 10.1111/j.1432-1033.1991.tb16036.x. [DOI] [PubMed] [Google Scholar]
- Morrison V. A., Lloyd B. K., Chia J. K., Tuazon C. U. Cardiovascular and bacteremic manifestations of Campylobacter fetus infection: case report and review. Rev Infect Dis. 1990 May-Jun;12(3):387–392. doi: 10.1093/clinids/12.3.387. [DOI] [PubMed] [Google Scholar]
- Ojanen T., Helander I. M., Haahtela K., Korhonen T. K., Laakso T. Outer Membrane Proteins and Lipopolysaccharides in Pathovars of Xanthomonas campestris. Appl Environ Microbiol. 1993 Dec;59(12):4143–4151. doi: 10.1128/aem.59.12.4143-4151.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parsons N. J., Andrade J. R., Patel P. V., Cole J. A., Smith H. Sialylation of lipopolysaccharide and loss of absorption of bactericidal antibody during conversion of gonococci to serum resistance by cytidine 5'-monophospho-N-acetyl neuraminic acid. Microb Pathog. 1989 Jul;7(1):63–72. doi: 10.1016/0882-4010(89)90112-5. [DOI] [PubMed] [Google Scholar]
- Penner J. L. The genus Campylobacter: a decade of progress. Clin Microbiol Rev. 1988 Apr;1(2):157–172. doi: 10.1128/cmr.1.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perez Perez G. I., Blaser M. J. Lipopolysaccharide characteristics of pathogenic campylobacters. Infect Immun. 1985 Feb;47(2):353–359. doi: 10.1128/iai.47.2.353-359.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perez-Perez G. I., Blaser M. J., Bryner J. H. Lipopolysaccharide structures of Campylobacter fetus are related to heat-stable serogroups. Infect Immun. 1986 Jan;51(1):209–212. doi: 10.21236/ada265573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perez-Perez G. I., Hopkins J. A., Blaser M. J. Lipopolysaccharide structures in Enterobacteriaceae, Pseudomonas aeruginosa, and Vibrio cholerae are immunologically related to Campylobacter spp. Infect Immun. 1986 Jan;51(1):204–208. doi: 10.1128/iai.51.1.204-208.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perez G. I., Hopkins J. A., Blaser M. J. Antigenic heterogeneity of lipopolysaccharides from Campylobacter jejuni and Campylobacter fetus. Infect Immun. 1985 May;48(2):528–533. doi: 10.1128/iai.48.2.528-533.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prokazova N. V., Dyatlovitskaya E. V., Bergelson L. D. Sialylated lactosylceramides. Possible inducers of non-specific immunosuppression and atherosclerotic lesions. Eur J Biochem. 1988 Feb 15;172(1):1–6. doi: 10.1111/j.1432-1033.1988.tb13847.x. [DOI] [PubMed] [Google Scholar]
- Pönkä A., Tilvis R., Helle J., Kosunen T. U. Infection with Campylobacter fetus. Scand J Infect Dis. 1984;16(1):127–128. doi: 10.3109/00365548409068419. [DOI] [PubMed] [Google Scholar]
- Rettig P. J. Campylobacter infections in human beings. J Pediatr. 1979 Jun;94(6):855–864. doi: 10.1016/s0022-3476(79)80202-4. [DOI] [PubMed] [Google Scholar]
- STROMINGER J. L., PARK J. T., THOMPSON R. E. Composition of the cell wall of Staphylococcus aureus: its relation to the mechanism of action of penicillin. J Biol Chem. 1959 Dec;234:3263–3268. [PubMed] [Google Scholar]
- Samuelson J. D., Winter A. J. Bovine vibriosis: the nature of the carrier state in the bull. J Infect Dis. 1966 Dec;116(5):581–592. doi: 10.1093/infdis/116.5.581. [DOI] [PubMed] [Google Scholar]
- Smibert R. M. The genus Campylobacter. Annu Rev Microbiol. 1978;32:673–709. doi: 10.1146/annurev.mi.32.100178.003325. [DOI] [PubMed] [Google Scholar]
- Sukupolvi S., Vaara M., Helander I. M., Viljanen P., Mäkelä P. H. New Salmonella typhimurium mutants with altered outer membrane permeability. J Bacteriol. 1984 Aug;159(2):704–712. doi: 10.1128/jb.159.2.704-712.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tharanathan R. N., Mayer H. Location of O-methyl sugars in antigenic (lipo-)polysaccharides of photosynthetic bacteria and cyanobacteria. Biochem J. 1978 May 1;171(2):403–408. doi: 10.1042/bj1710403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
- Ullmann U., Langmaack H., Blasius C. Campylobacteriosis des Menschen durch die Subspezies intestinalis und fetus unter Berücksichtigung sechs neuer Erkrankungen. Infection. 1982;10 (Suppl 2):S64–S66. doi: 10.1007/BF01640856. [DOI] [PubMed] [Google Scholar]
- Verresen L., Vrolix M., Verhaegen J., Lins R. Campylobacter bacteraemia. Report of 2 cases and review of the literature. Acta Clin Belg. 1985;40(2):99–104. doi: 10.1080/22953337.1985.11719061. [DOI] [PubMed] [Google Scholar]
- WARAVDEKAR V. S., SASLAW L. D. A sensitive colorimetric method for the estimation of 2-deoxy sugars with the use of the malonaldehyde-thiobarbituric acid reaction. J Biol Chem. 1959 Aug;234(8):1945–1950. [PubMed] [Google Scholar]
- Weckesser J., Katz A., Drews G., Mayer H., Fromme I. Lipopolysaccharide containing L-acofriose in the filamentous blue-green alga Anabaena variabilis. J Bacteriol. 1974 Nov;120(2):672–678. doi: 10.1128/jb.120.2.672-678.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weckesser J., Mayer H., Drews G. The identification of 3-O-methyl-L-rhamnose (L-acofriose) as constituent of the lipopolysaccharide of Rhodopseudomonas capsulata. Eur J Biochem. 1970 Sep;16(1):158–160. doi: 10.1111/j.1432-1033.1970.tb01067.x. [DOI] [PubMed] [Google Scholar]
- Wyatt R. A., Younoszai K., Anuras S., Myers M. G. Campylobacter fetus septicemia and hepatitis in a child with agammaglobulinemia. J Pediatr. 1977 Sep;91(3):441–442. doi: 10.1016/s0022-3476(77)81319-x. [DOI] [PubMed] [Google Scholar]
- Yang L. Y., Pei Z. H., Fujimoto S., Blaser M. J. Reattachment of surface array proteins to Campylobacter fetus cells. J Bacteriol. 1992 Feb;174(4):1258–1267. doi: 10.1128/jb.174.4.1258-1267.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]