Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1994 Sep;62(9):4047–4053. doi: 10.1128/iai.62.9.4047-4053.1994

Tolerance to staphylococcal enterotoxin B initiated Th1 cell differentiation in mice infected with Candida albicans.

L Romani 1, P Puccetti 1, A Mencacci 1, R Spaccapelo 1, E Cenci 1, L Tonnetti 1, F Bistoni 1
PMCID: PMC303066  PMID: 7914883

Abstract

Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that specifically activates T cells bearing V beta 8 T-cell receptor domains, which eventually leads to a long-lasting state of clonal anergy accompanied by selective cell death in the targeted CD4+ subset. Because the superantigen is known to promote Th1 cell differentiation in vitro, we have investigated the effect of SEB treatment on the course of Th2-associated progressive disease in mice infected systemically with Candida albicans. On the basis of the kinetics of SEB-induced changes in CD4+ cells and production in sera of interleukin 4 (IL-4), IL-10, and gamma interferon, we obtained evidence that V beta 8+ cell anergy concomitant with infection abolished the early IL-4/IL-10 response of the host to the yeast, ultimately leading to a state of resistance characterized by gamma interferon secretion in vitro by antigen-specific CD4+ cells. In contrast, SEB administered near the time of challenge resulted in accelerated mortality. Significant resistance to infection was also afforded by exposure of mice to a retrovirally encoded endogenous superantigen. These data suggest that CD4+ V beta 8+ T cells play an important role in vivo in the initiation of a Th2 response to C. albicans and that suppression of their activity may alter the qualitative development of the T-cell response and the outcome of infection.

Full text

PDF
4047

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashman R. B., Papadimitriou J. M. What's new in the mechanisms of host resistance to Candida albicans infection? Pathol Res Pract. 1990 Aug;186(4):527–534. doi: 10.1016/S0344-0338(11)80477-2. [DOI] [PubMed] [Google Scholar]
  2. Bandeira A., Coutinho A., Burlen-Defranoux O., Khazaal I., Coltey M., Jacquemart F., Le Douarin N., Salaün J. Thymic epithelium induces neither clonal deletion nor anergy to Mls 1a antigens. Eur J Immunol. 1992 Jun;22(6):1397–1404. doi: 10.1002/eji.1830220611. [DOI] [PubMed] [Google Scholar]
  3. Baschieri S., Lees R. K., Lussow A. R., MacDonald H. R. Clonal anergy to staphylococcal enterotoxin B in vivo: selective effects on T cell subsets and lymphokines. Eur J Immunol. 1993 Oct;23(10):2661–2666. doi: 10.1002/eji.1830231041. [DOI] [PubMed] [Google Scholar]
  4. Bistoni F., Cenci E., Mencacci A., Schiaffella E., Mosci P., Puccetti P., Romani L. Mucosal and systemic T helper cell function after intragastric colonization of adult mice with Candida albicans. J Infect Dis. 1993 Dec;168(6):1449–1457. doi: 10.1093/infdis/168.6.1449. [DOI] [PubMed] [Google Scholar]
  5. Calderone R. A., Braun P. C. Adherence and receptor relationships of Candida albicans. Microbiol Rev. 1991 Mar;55(1):1–20. doi: 10.1128/mr.55.1.1-20.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chatelain R., Varkila K., Coffman R. L. IL-4 induces a Th2 response in Leishmania major-infected mice. J Immunol. 1992 Feb 15;148(4):1182–1187. [PubMed] [Google Scholar]
  7. Coker L. A., 3rd, Mercadal C. M., Rouse B. T., Moore R. N. Differential effects of CD4+ and CD8+ cells in acute, systemic murine candidosis. J Leukoc Biol. 1992 Mar;51(3):305–306. doi: 10.1002/jlb.51.3.305. [DOI] [PubMed] [Google Scholar]
  8. Gaur A., Fathman C. G., Steinman L., Brocke S. SEB induced anergy: modulation of immune response to T cell determinants of myoglobin and myelin basic protein. J Immunol. 1993 Apr 1;150(7):3062–3069. [PubMed] [Google Scholar]
  9. Gollob K. J., Nagelkerken L., Coffman R. L. Endogenous retroviral superantigen presentation by B cells induces the development of type 1 CD4+ T helper lymphocytes. Eur J Immunol. 1993 Oct;23(10):2565–2571. doi: 10.1002/eji.1830231028. [DOI] [PubMed] [Google Scholar]
  10. Held W., Shakhov A. N., Izui S., Waanders G. A., Scarpellino L., MacDonald H. R., Acha-Orbea H. Superantigen-reactive CD4+ T cells are required to stimulate B cells after infection with mouse mammary tumor virus. J Exp Med. 1993 Feb 1;177(2):359–366. doi: 10.1084/jem.177.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kawabe Y., Ochi A. Programmed cell death and extrathymic reduction of Vbeta8+ CD4+ T cells in mice tolerant to Staphylococcus aureus enterotoxin B. Nature. 1991 Jan 17;349(6306):245–248. doi: 10.1038/349245a0. [DOI] [PubMed] [Google Scholar]
  12. Kawamura T., Nagata M., Utsugi T., Yoon J. W. Prevention of autoimmune type I diabetes by CD4+ suppressor T cells in superantigen-treated non-obese diabetic mice. J Immunol. 1993 Oct 15;151(8):4362–4370. [PubMed] [Google Scholar]
  13. Kim C., Siminovitch K. A., Ochi A. Reduction of lupus nephritis in MRL/lpr mice by a bacterial superantigen treatment. J Exp Med. 1991 Dec 1;174(6):1431–1437. doi: 10.1084/jem.174.6.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lee W. T., Vitetta E. S. Memory T cells are anergic to the superantigen staphylococcal enterotoxin B. J Exp Med. 1992 Aug 1;176(2):575–579. doi: 10.1084/jem.176.2.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MacDonald H. R., Baschieri S., Lees R. K. Clonal expansion precedes anergy and death of V beta 8+ peripheral T cells responding to staphylococcal enterotoxin B in vivo. Eur J Immunol. 1991 Aug;21(8):1963–1966. doi: 10.1002/eji.1830210827. [DOI] [PubMed] [Google Scholar]
  16. Matthews R. C. The 14th C. L. Oakley Lecture. Candida albicans HSP 90: link between protective and auto immunity. J Med Microbiol. 1992 Jun;36(6):367–370. doi: 10.1099/00222615-36-6-367. [DOI] [PubMed] [Google Scholar]
  17. Migita K., Ochi A. The fate of anergic T cells in vivo. J Immunol. 1993 Feb 1;150(3):763–770. [PubMed] [Google Scholar]
  18. Nagelkerken L., Gollob K. J., Tielemans M., Coffman R. L. Role of transforming growth factor-beta in the preferential induction of T helper cells of type 1 by staphylococcal enterotoxin B. Eur J Immunol. 1993 Sep;23(9):2306–2310. doi: 10.1002/eji.1830230938. [DOI] [PubMed] [Google Scholar]
  19. Nagelkerken L., Gollob K. J., Tielemans M., Coffman R. L. Role of transforming growth factor-beta in the preferential induction of T helper cells of type 1 by staphylococcal enterotoxin B. Eur J Immunol. 1993 Sep;23(9):2306–2310. doi: 10.1002/eji.1830230938. [DOI] [PubMed] [Google Scholar]
  20. Nelson R. D., Shibata N., Podzorski R. P., Herron M. J. Candida mannan: chemistry, suppression of cell-mediated immunity, and possible mechanisms of action. Clin Microbiol Rev. 1991 Jan;4(1):1–19. doi: 10.1128/cmr.4.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Newell K. A., Ellenhorn J. D., Bruce D. S., Bluestone J. A. In vivo T-cell activation by staphylococcal enterotoxin B prevents outgrowth of a malignant tumor. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1074–1078. doi: 10.1073/pnas.88.3.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ochi A., Yuh K., Migita K., Kawabe Y. Effects of staphylococcal toxins on T-cell activity in vivo. Chem Immunol. 1992;55:115–136. [PubMed] [Google Scholar]
  23. Puccetti P., Mencacci A., Cenci E., Spaccapelo R., Mosci P., Enssle K. H., Romani L., Bistoni F. Cure of murine candidiasis by recombinant soluble interleukin-4 receptor. J Infect Dis. 1994 Jun;169(6):1325–1331. doi: 10.1093/infdis/169.6.1325. [DOI] [PubMed] [Google Scholar]
  24. Rammensee H. G., Kroschewski R., Frangoulis B. Clonal anergy induced in mature V beta 6+ T lymphocytes on immunizing Mls-1b mice with Mls-1a expressing cells. Nature. 1989 Jun 15;339(6225):541–544. doi: 10.1038/339541a0. [DOI] [PubMed] [Google Scholar]
  25. Reiner S. L., Locksley R. M. Lessons from Leishmania: a model for investigations of CD4+ subset differentiation. Infect Agents Dis. 1992 Feb;1(1):33–42. [PubMed] [Google Scholar]
  26. Romani L., Cenci E., Mencacci A., Spaccapelo R., Grohmann U., Puccetti P., Bistoni F. Gamma interferon modifies CD4+ subset expression in murine candidiasis. Infect Immun. 1992 Nov;60(11):4950–4952. doi: 10.1128/iai.60.11.4950-4952.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Romani L., Mencacci A., Cenci E., Mosci P., Vitellozzi G., Grohmann U., Puccetti P., Bistoni F. Course of primary candidiasis in T cell-depleted mice infected with attenuated variant cells. J Infect Dis. 1992 Dec;166(6):1384–1392. doi: 10.1093/infdis/166.6.1384. [DOI] [PubMed] [Google Scholar]
  28. Romani L., Mencacci A., Cenci E., Spaccapelo R., Mosci P., Puccetti P., Bistoni F. CD4+ subset expression in murine candidiasis. Th responses correlate directly with genetically determined susceptibility or vaccine-induced resistance. J Immunol. 1993 Feb 1;150(3):925–931. [PubMed] [Google Scholar]
  29. Romani L., Mencacci A., Grohmann U., Mocci S., Mosci P., Puccetti P., Bistoni F. Neutralizing antibody to interleukin 4 induces systemic protection and T helper type 1-associated immunity in murine candidiasis. J Exp Med. 1992 Jul 1;176(1):19–25. doi: 10.1084/jem.176.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Romani L., Mencacci A., Tonnetti L., Spaccapelo R., Cenci E., Wolf S., Puccetti P., Bistoni F. Interleukin-12 but not interferon-gamma production correlates with induction of T helper type-1 phenotype in murine candidiasis. Eur J Immunol. 1994 Apr;24(4):909–915. doi: 10.1002/eji.1830240419. [DOI] [PubMed] [Google Scholar]
  31. Romani L., Mocci S., Bietta C., Lanfaloni L., Puccetti P., Bistoni F. Th1 and Th2 cytokine secretion patterns in murine candidiasis: association of Th1 responses with acquired resistance. Infect Immun. 1991 Dec;59(12):4647–4654. doi: 10.1128/iai.59.12.4647-4654.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Romani L., Puccetti P., Mencacci A., Cenci E., Spaccapelo R., Tonnetti L., Grohmann U., Bistoni F. Neutralization of IL-10 up-regulates nitric oxide production and protects susceptible mice from challenge with Candida albicans. J Immunol. 1994 Apr 1;152(7):3514–3521. [PubMed] [Google Scholar]
  33. Rott O., Wekerle H., Fleischer B. Protection from experimental allergic encephalomyelitis by application of a bacterial superantigen. Int Immunol. 1992 Mar;4(3):347–353. doi: 10.1093/intimm/4.3.347. [DOI] [PubMed] [Google Scholar]
  34. Röcken M., Müller K. M., Saurat J. H., Müller I., Louis J. A., Cerottini J. C., Hauser C. Central role for TCR/CD3 ligation in the differentiation of CD4+ T cells toward A Th1 or Th2 functional phenotype. J Immunol. 1992 Jan 1;148(1):47–54. [PubMed] [Google Scholar]
  35. Röcken M., Urban J. F., Shevach E. M. Infection breaks T-cell tolerance. Nature. 1992 Sep 3;359(6390):79–82. doi: 10.1038/359079a0. [DOI] [PubMed] [Google Scholar]
  36. Sadick M. D., Heinzel F. P., Holaday B. J., Pu R. T., Dawkins R. S., Locksley R. M. Cure of murine leishmaniasis with anti-interleukin 4 monoclonal antibody. Evidence for a T cell-dependent, interferon gamma-independent mechanism. J Exp Med. 1990 Jan 1;171(1):115–127. doi: 10.1084/jem.171.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schmitz J., Assenmacher M., Radbruch A. Regulation of T helper cell cytokine expression: functional dichotomy of antigen-presenting cells. Eur J Immunol. 1993 Jan;23(1):191–199. doi: 10.1002/eji.1830230130. [DOI] [PubMed] [Google Scholar]
  38. Scott P. Selective differentiation of CD4+ T helper cell subsets. Curr Opin Immunol. 1993 Jun;5(3):391–397. doi: 10.1016/0952-7915(93)90058-z. [DOI] [PubMed] [Google Scholar]
  39. Seder R. A., Paul W. E., Davis M. M., Fazekas de St Groth B. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med. 1992 Oct 1;176(4):1091–1098. doi: 10.1084/jem.176.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sher A., Coffman R. L. Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annu Rev Immunol. 1992;10:385–409. doi: 10.1146/annurev.iy.10.040192.002125. [DOI] [PubMed] [Google Scholar]
  41. Sinha A. A., Lopez M. T., McDevitt H. O. Autoimmune diseases: the failure of self tolerance. Science. 1990 Jun 15;248(4961):1380–1388. doi: 10.1126/science.1972595. [DOI] [PubMed] [Google Scholar]
  42. Titus R. G., Ceredig R., Cerottini J. C., Louis J. A. Therapeutic effect of anti-L3T4 monoclonal antibody GK1.5 on cutaneous leishmaniasis in genetically-susceptible BALB/c mice. J Immunol. 1985 Sep;135(3):2108–2114. [PubMed] [Google Scholar]
  43. Vanier L. E., Prud'homme G. J. Cyclosporin A markedly enhances superantigen-induced peripheral T cell deletion and inhibits anergy induction. J Exp Med. 1992 Jul 1;176(1):37–46. doi: 10.1084/jem.176.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Webb S. R., Hutchinson J., Sprent J. Mls antigens: immunity and tolerance. Chem Immunol. 1992;55:87–114. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES