Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1994 Oct;62(10):4362–4366. doi: 10.1128/iai.62.10.4362-4366.1994

Immune responses to band 3 neoantigens on Plasmodium falciparum-infected erythrocytes in subjects living in an area of intense malaria transmission are associated with low parasite density and high hematocrit value.

B Hogh 1, E Petersen 1, I Crandall 1, A Gottschau 1, I W Sherman 1
PMCID: PMC303117  PMID: 7927696

Abstract

During the intracellular development of the human malarial parasite, Plasmodium falciparum, cryptic regions of the erythrocyte band 3 protein are exposed. Antibodies against these band 3-related neoantigens block cytoadherence, and peptides based on amino acid sequences of putative exofacial loops of band 3 protein block the in vitro and in vivo adherence of P. falciparum-infected erythrocytes. At present, it is not known whether reactivity to these antigens is related to exposure to the malaria parasite or is correlated with protective immunity. The reactivities of plasma to peptides containing amino acid sequences of putative exofacial loops 3 and 7 of human band 3 protein were determined for children and adults living in an area of perennial malaria transmission (Liberia) and for donors who had never been exposed to malaria (Denmark). Plasma samples from children and adults living in an area of intense malaria transmission showed a much higher reactivity with the band 3 peptides than did those from nonimmune individuals. High reactivity to the loop 3 peptide (amino acids 546 to 555) was correlated with lower mean parasite density in children in the 5- to 9-year-old age group. The presence of antibodies against loop 3 and 7 peptides was not associated with a low packed erythrocyte volume (hematocrit); in fact, higher-than-average reactivities to both peptides were positively correlated with high hematocrit values, indicating that antibodies which specifically recognize the band 3-related neoantigens are not involved in hemolysis (autoimmunity).

Full text

PDF
4362

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aikawa M., Iseki M., Barnwell J. W., Taylor D., Oo M. M., Howard R. J. The pathology of human cerebral malaria. Am J Trop Med Hyg. 1990 Aug;43(2 Pt 2):30–37. doi: 10.4269/ajtmh.1990.43.30. [DOI] [PubMed] [Google Scholar]
  2. Berzins K. Pf155/RESA is not a surface antigen of Plasmodium falciparum-infected erythrocytes. Parasitol Today. 1991 Aug;7(8):193–194. doi: 10.1016/0169-4758(91)90136-c. [DOI] [PubMed] [Google Scholar]
  3. Borre M. B., Dziegiel M., Høgh B., Petersen E., Rieneck K., Riley E., Meis J. F., Aikawa M., Nakamura K., Harada M. Primary structure and localization of a conserved immunogenic Plasmodium falciparum glutamate rich protein (GLURP) expressed in both the preerythrocytic and erythrocytic stages of the vertebrate life cycle. Mol Biochem Parasitol. 1991 Nov;49(1):119–131. doi: 10.1016/0166-6851(91)90135-s. [DOI] [PubMed] [Google Scholar]
  4. Crandall I., Collins W. E., Gysin J., Sherman I. W. Synthetic peptides based on motifs present in human band 3 protein inhibit cytoadherence/sequestration of the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4703–4707. doi: 10.1073/pnas.90.10.4703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crandall I., Sherman I. W. Antibodies to synthetic peptides based on band 3 motifs react specifically with Plasmodium falciparum (human malaria)-infected erythrocytes and block cytoadherence. Parasitology. 1994 May;108(Pt 4):389–396. doi: 10.1017/s0031182000075934. [DOI] [PubMed] [Google Scholar]
  6. Crandall I., Sherman I. W. Cytoadherence-related neoantigens on Plasmodium falciparum (human malaria)-infected human erythrocytes result from the exposure of normally cryptic regions of the band 3 protein. Parasitology. 1994 Apr;108(Pt 3):257–267. doi: 10.1017/s0031182000076101. [DOI] [PubMed] [Google Scholar]
  7. Crandall I., Sherman I. W. Plasmodium falciparum (human malaria)-induced modifications in human erythrocyte band 3 protein. Parasitology. 1991 Jun;102(Pt 3):335–340. doi: 10.1017/s0031182000064271. [DOI] [PubMed] [Google Scholar]
  8. Dziegiel M., Borre M. B., Jepsen S., Hogh B., Petersen E., Vuust J. Recombinant Plasmodium falciparum glutamate rich protein; purification and use in enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 1991 Mar;44(3):306–313. doi: 10.4269/ajtmh.1991.44.306. [DOI] [PubMed] [Google Scholar]
  9. Facer C. A., Bray R. S., Brown J. Direct Coombs antiglobulin reactions in Gambian children with Plasmodium falciparum malaria. I. Incidence and class specificity. Clin Exp Immunol. 1979 Jan;35(1):119–127. [PMC free article] [PubMed] [Google Scholar]
  10. Foley M., Tilley L., Sawyer W. H., Anders R. F. The ring-infected erythrocyte surface antigen of Plasmodium falciparum associates with spectrin in the erythrocyte membrane. Mol Biochem Parasitol. 1991 May;46(1):137–147. doi: 10.1016/0166-6851(91)90207-m. [DOI] [PubMed] [Google Scholar]
  11. Hogh B., Petersen E., Dziegiel M., David K., Hanson A., Borre M., Holm A., Vuust J., Jepsen S. Antibodies to a recombinant glutamate-rich Plasmodium falciparum protein: evidence for protection of individuals living in a holoendemic area of Liberia. Am J Trop Med Hyg. 1992 Mar;46(3):307–313. doi: 10.4269/ajtmh.1992.46.307. [DOI] [PubMed] [Google Scholar]
  12. Høgh B., Thompson R., Zakiuddin I. S., Boudin C., Borre M. Glutamate rich Plasmodium falciparum antigen (GLURP). Parassitologia. 1993 Jul;35 (Suppl):47–50. [PubMed] [Google Scholar]
  13. Kay M. M. Band 3 in aging and neurological disease. Ann N Y Acad Sci. 1991;621:179–204. doi: 10.1111/j.1749-6632.1991.tb16979.x. [DOI] [PubMed] [Google Scholar]
  14. Petersen E., Høgh B., Marbiah N. T., David K., Hanson A. P. Development of immunity against Plasmodium falciparum malaria: clinical and parasitologic immunity cannot be separated. J Infect Dis. 1991 Nov;164(5):949–953. doi: 10.1093/infdis/164.5.949. [DOI] [PubMed] [Google Scholar]
  15. Pongponratn E., Riganti M., Punpoowong B., Aikawa M. Microvascular sequestration of parasitized erythrocytes in human falciparum malaria: a pathological study. Am J Trop Med Hyg. 1991 Feb;44(2):168–175. doi: 10.4269/ajtmh.1991.44.168. [DOI] [PubMed] [Google Scholar]
  16. Rougon G., Ceard B., Van Rietschoten J., Jordan B., Barbet J. Induction with a synthetic peptide of antibodies to HLA class I C-terminal intracytoplasmic region. Mol Immunol. 1984 Jun;21(6):461–468. doi: 10.1016/0161-5890(84)90061-0. [DOI] [PubMed] [Google Scholar]
  17. Tanner M. J., Martin P. G., High S. The complete amino acid sequence of the human erythrocyte membrane anion-transport protein deduced from the cDNA sequence. Biochem J. 1988 Dec 15;256(3):703–712. doi: 10.1042/bj2560703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Trager W., Rudzinska M. A., Bradbury P. C. The fine structure of Plasmodium falciparum and its host erythrocytes in natural malarial infections in man. Bull World Health Organ. 1966;35(6):883–885. [PMC free article] [PubMed] [Google Scholar]
  19. Winograd E., Sherman I. W. Characterization of a modified red cell membrane protein expressed on erythrocytes infected with the human malaria parasite Plasmodium falciparum: possible role as a cytoadherent mediating protein. J Cell Biol. 1989 Jan;108(1):23–30. doi: 10.1083/jcb.108.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Woodruff A. W., Ansdell V. E., Pettitt L. E. Cause of anaemia in malaria. Lancet. 1979 May 19;1(8125):1055–1057. doi: 10.1016/s0140-6736(79)92952-0. [DOI] [PubMed] [Google Scholar]
  21. van Schravendijk M. R., Rock E. P., Marsh K., Ito Y., Aikawa M., Neequaye J., Ofori-Adjei D., Rodriguez R., Patarroyo M. E., Howard R. J. Characterization and localization of Plasmodium falciparum surface antigens on infected erythrocytes from west African patients. Blood. 1991 Jul 1;78(1):226–236. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES