Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1994 Nov;62(11):4768–4774. doi: 10.1128/iai.62.11.4768-4774.1994

Composition and diversity of intestinal coliform flora influence bacterial translocation in rats after hemorrhagic stress.

M Katouli 1, T Bark 1, O Ljungqvist 1, T Svenberg 1, R Möllby 1
PMCID: PMC303185  PMID: 7927753

Abstract

Coliform bacteria are the most frequently reported bacteria to translocate after hemorrhage. We investigated the correlation between composition and diversity of the cecal coliform flora and the degree of translocation in a rat model of hemorrhagic stress. Two groups of nine rats each were bled to 60 and 50 mm Hg mean arterial blood pressure, respectively. A sham-operated group without bleeding (n = 9) and a noninstrumented group (n = 6) served as controls. From each rat, 40 coliform isolates from the cecum and up to 16 from positive mesenteric lymph node (MLN) cultures were tested with an automated biochemical fingerprinting method. The phenotypic diversity of coliforms in each cecal sample was calculated as Simpson's diversity index (DI), and similarities between bacterial types in different samples were calculated as population similarity coefficients. Three rats in the sham-operated group and seven in each of the bled groups showed bacterial translocation. Of the different biochemical phenotypes (BPTs) found in the cecum of bled rats (mean, 6.5 BPTs), only a few were detected in MLNs (mean, 1.9 BPTs per MLN), with Escherichia coli being the dominant species. The translocating E. coli strains were mainly of two BPTs. Rats showing no translocation either did not carry these strains or had a high diversity of coliforms in the cecum. Furthermore, translocation of these coliform types was independent of their proportion in the cecum. In bled rats, the diversity of coliforms (mean DI, 0.53) was significantly higher than that in control groups (mean DI, 0.30; P = 0.004), suggesting that hemorrhage stimulates an increase in diversity of cecal coliforms. Rats with similar coliform flora and subjected to the same treatment showed similar patterns of translocation. Our results suggest that the composition of the coliform flora is an important factor in translocation and that certain coliform strains have the ability to translocate and survive in MLNs more easily than others.

Full text

PDF
4768

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker J. W., Deitch E. A., Li M., Berg R. D., Specian R. D. Hemorrhagic shock induces bacterial translocation from the gut. J Trauma. 1988 Jul;28(7):896–906. doi: 10.1097/00005373-198807000-00002. [DOI] [PubMed] [Google Scholar]
  2. Bark T., Katouli M., Ljungqvist O., Möllby R., Svenberg T. Bacterial translocation after non-lethal hemorrhage in the rat. Circ Shock. 1993 Sep;41(1):60–65. [PubMed] [Google Scholar]
  3. Berg R. D. Bacterial translocation from the gastrointestinal tract. Compr Ther. 1990 Oct;16(10):8–15. [PubMed] [Google Scholar]
  4. Berg R. D., Owens W. E. Inhibition of translocation of viable Escherichia coli from the gastrointestinal tract of mice by bacterial antagonism. Infect Immun. 1979 Sep;25(3):820–827. doi: 10.1128/iai.25.3.820-827.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berg R. D. Promotion of the translocation of enteric bacteria from the gastrointestinal tracts of mice by oral treatment with penicillin, clindamycin, or metronidazole. Infect Immun. 1981 Sep;33(3):854–861. doi: 10.1128/iai.33.3.854-861.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berg R. D., Wommack E., Deitch E. A. Immunosuppression and intestinal bacterial overgrowth synergistically promote bacterial translocation. Arch Surg. 1988 Nov;123(11):1359–1364. doi: 10.1001/archsurg.1988.01400350073011. [DOI] [PubMed] [Google Scholar]
  7. Deitch E. A., Berg R. D. Endotoxin but not malnutrition promotes bacterial translocation of the gut flora in burned mice. J Trauma. 1987 Feb;27(2):161–166. doi: 10.1097/00005373-198702000-00012. [DOI] [PubMed] [Google Scholar]
  8. Deitch E. A., Berg R., Specian R. Endotoxin promotes the translocation of bacteria from the gut. Arch Surg. 1987 Feb;122(2):185–190. doi: 10.1001/archsurg.1987.01400140067008. [DOI] [PubMed] [Google Scholar]
  9. Deitch E. A., Ma L., Ma J. W., Berg R. D. Lethal burn-induced bacterial translocation: role of genetic resistance. J Trauma. 1989 Nov;29(11):1480–1487. doi: 10.1097/00005373-198911000-00005. [DOI] [PubMed] [Google Scholar]
  10. Deitch E. A., Ma W. J., Ma L., Berg R., Specian R. D. Endotoxin-induced bacterial translocation: a study of mechanisms. Surgery. 1989 Aug;106(2):292–300. [PubMed] [Google Scholar]
  11. Deitch E. A. The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg. 1990 Mar;125(3):403–404. doi: 10.1001/archsurg.1990.01410150125024. [DOI] [PubMed] [Google Scholar]
  12. Fink M. P. Gastrointestinal mucosal injury in experimental models of shock, trauma, and sepsis. Crit Care Med. 1991 May;19(5):627–641. doi: 10.1097/00003246-199105000-00009. [DOI] [PubMed] [Google Scholar]
  13. Fuller R., Jayne-Williams D. J. Resistance of the fowl (Gallus domesticus) to invasion by its intestinal flora. II. Clearance of translocated intestinal bacteria. Res Vet Sci. 1970 Jul;11(4):368–374. [PubMed] [Google Scholar]
  14. Grum C. M. Tissue oxygenation in low flow states and during hypoxemia. Crit Care Med. 1993 Feb;21(2 Suppl):S44–S49. doi: 10.1097/00003246-199302001-00009. [DOI] [PubMed] [Google Scholar]
  15. Hunter P. R., Gaston M. A. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol. 1988 Nov;26(11):2465–2466. doi: 10.1128/jcm.26.11.2465-2466.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Katouli M., Kühn I., Möllby R. Evaluation of the stability of biochemical phenotypes of Escherichia coli upon subculturing and storage. J Gen Microbiol. 1990 Sep;136(9):1681–1688. doi: 10.1099/00221287-136-9-1681. [DOI] [PubMed] [Google Scholar]
  17. Katouli M., Wollin R., Kühn I., Farhoudi-Moghaddam A. A., Möllby R. The use of biochemical fingerprinting, phage typing and antimicrobial-susceptibility testing in the detection of epidemic strains of Salmonella of serotype Typhimurium in Iran. J Med Microbiol. 1992 Oct;37(4):252–257. doi: 10.1099/00222615-37-4-252. [DOI] [PubMed] [Google Scholar]
  18. Koziol J. M., Rush B. F., Jr, Smith S. M., Machiedo G. W. Occurrence of bacteremia during and after hemorrhagic shock. J Trauma. 1988 Jan;28(1):10–16. [PubMed] [Google Scholar]
  19. Li M., Specian R. D., Berg R. D., Deitch E. A. Effects of protein malnutrition and endotoxin on the intestinal mucosal barrier to the translocation of indigenous flora in mice. JPEN J Parenter Enteral Nutr. 1989 Nov-Dec;13(6):572–578. doi: 10.1177/0148607189013006572. [DOI] [PubMed] [Google Scholar]
  20. Maejima K., Deitch E. A., Berg R. D. Bacterial translocation from the gastrointestinal tracts of rats receiving thermal injury. Infect Immun. 1984 Jan;43(1):6–10. doi: 10.1128/iai.43.1.6-10.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morehouse J. L., Specian R. D., Stewart J. J., Berg R. D. Translocation of indigenous bacteria from the gastrointestinal tract of mice after oral ricinoleic acid treatment. Gastroenterology. 1986 Sep;91(3):673–682. doi: 10.1016/0016-5085(86)90638-4. [DOI] [PubMed] [Google Scholar]
  22. Quiros G., Ware J. Cardio-vascular and metabolic alterations caused by hemorrhage in fed and starved rats. Acta Physiol Scand. 1983 Mar;117(3):397–403. doi: 10.1111/j.1748-1716.1983.tb00012.x. [DOI] [PubMed] [Google Scholar]
  23. Rush B. F., Jr, Sori A. J., Murphy T. F., Smith S., Flanagan J. J., Jr, Machiedo G. W. Endotoxemia and bacteremia during hemorrhagic shock. The link between trauma and sepsis? Ann Surg. 1988 May;207(5):549–554. doi: 10.1097/00000658-198805000-00009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Steffen E. K., Berg R. D. Relationship between cecal population levels of indigenous bacteria and translocation to the mesenteric lymph nodes. Infect Immun. 1983 Mar;39(3):1252–1259. doi: 10.1128/iai.39.3.1252-1259.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tancrède C. H., Andremont A. O. Bacterial translocation and gram-negative bacteremia in patients with hematological malignancies. J Infect Dis. 1985 Jul;152(1):99–103. doi: 10.1093/infdis/152.1.99. [DOI] [PubMed] [Google Scholar]
  26. Wells C. L., Maddaus M. A., Jechorek R. P., Simmons R. L. Ability of intestinal Escherichia coli to survive within mesenteric lymph nodes. Infect Immun. 1987 Nov;55(11):2834–2837. doi: 10.1128/iai.55.11.2834-2837.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wells C. L., Maddaus M. A., Jechorek R. P., Simmons R. L. Role of intestinal anaerobic bacteria in colonization resistance. Eur J Clin Microbiol Infect Dis. 1988 Feb;7(1):107–113. doi: 10.1007/BF01962194. [DOI] [PubMed] [Google Scholar]
  28. Wells C. L., Maddaus M. A., Reynolds C. M., Jechorek R. P., Simmons R. L. Role of anaerobic flora in the translocation of aerobic and facultatively anaerobic intestinal bacteria. Infect Immun. 1987 Nov;55(11):2689–2694. doi: 10.1128/iai.55.11.2689-2694.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wells C. L., Maddaus M. A., Simmons R. L. Proposed mechanisms for the translocation of intestinal bacteria. Rev Infect Dis. 1988 Sep-Oct;10(5):958–979. doi: 10.1093/clinids/10.5.958. [DOI] [PubMed] [Google Scholar]
  30. Wolochow H., Hildebrand G. J., Lamanna C. Translocation of microorganisms across the intestinal wall of the rat: effect of microbial size and concentration. J Infect Dis. 1966 Oct;116(4):523–528. doi: 10.1093/infdis/116.4.523. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES