Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1994 Dec;62(12):5442–5446. doi: 10.1128/iai.62.12.5442-5446.1994

Effects of fecal microorganisms and their chloroform-resistant variants derived from mice, rats, and humans on immunological and physiological characteristics of the intestines of ex-germfree mice.

Y Okada 1, H Setoyama 1, S Matsumoto 1, A Imaoka 1, M Nanno 1, M Kawaguchi 1, Y Umesaki 1
PMCID: PMC303286  PMID: 7960124

Abstract

In order to elucidate the nature of intestinal flora affecting the immunological and physiological parameters of the intestine, we produced several kinds of ex-germfree mice associated with fecal organisms and their chloroform-resistant variants derived from mice, rats, and humans. The phenotypes of intraepithelial lymphocytes were changed to those in conventional mice, particularly the increased positive percentage of alpha beta T-cell-receptor and Thy-1-bearing T cells, on association of the microorganisms (MF) and their chloroform resistant variants (MChl) derived from mice, but not rats and humans, with germfree mice. The cytolytic activity of intraepithelial lymphocytes was expressed only in the MF and MChl groups. The induction of the synthesis of fucosyl asialo GM1 glycolipid, the expression of major histocompatibility complex class II molecule, an increase in the mitotic indices of colonic epithelial cells, and a decrease in lactase activity of the small intestinal epithelial cells also occurred only in the two groups. On the other hand, the cecal size (cecal weight/body weight ratio) was reduced in the mice of all groups examined here, there being approximately the same amount and composition of organic acids, such as acetic acid, butyric acid, and propionic acid, in the cecal contents. Taken together, the results suggest that mouse-specific and chloroform-resistant microorganisms, which are difficult to cultivate at present, may contribute to alteration of the immunological and epithelial characteristics of the mouse intestine. Another factor derived from the intestinal flora, for example, bacterial metabolites such as organic acids, may also affect the cecal size.

Full text

PDF
5442

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DAHLQVIST A. METHOD FOR ASSAY OF INTESTINAL DISACCHARIDASES. Anal Biochem. 1964 Jan;7:18–25. doi: 10.1016/0003-2697(64)90115-0. [DOI] [PubMed] [Google Scholar]
  2. DUBOS R., SCHAEDLER R. W., COSTELLO R., HOET P. INDIGENOUS, NORMAL, AND AUTOCHTHONOUS FLORA OF THE GASTROINTESTINAL TRACT. J Exp Med. 1965 Jul 1;122:67–76. doi: 10.1084/jem.122.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davis C. P., Savage D. C. Habitat, succession, attachment, and morphology of segmented, filamentous microbes indigenous to the murine gastrointestinal tract. Infect Immun. 1974 Oct;10(4):948–956. doi: 10.1128/iai.10.4.948-956.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Freter R., Abrams G. D. Function of various intestinal bacteria in converting germfree mice to the normal state. Infect Immun. 1972 Aug;6(2):119–126. doi: 10.1128/iai.6.2.119-126.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hazenberg M. P., Bakker M., Verschoor-Burggraaf A. Effects of the human intestinal flora on germ-free mice. J Appl Bacteriol. 1981 Feb;50(1):95–106. doi: 10.1111/j.1365-2672.1981.tb00874.x. [DOI] [PubMed] [Google Scholar]
  6. Hazenberg M. P., Custers-van Leshout L. M. Conversion of germ-free mice to the normal state by Clostridia. Z Versuchstierkd. 1976;18(4):185–190. [PubMed] [Google Scholar]
  7. Higashi H., Fukui Y., Ueda S., Kato S., Hirabayashi Y., Matsumoto M., Naiki M. Sensitive enzyme-immunostaining and densitometric determination on thin-layer chromatography of N-glycolylneuraminic acid-containing glycosphingolipids, Hanganutziu-Deicher antigens. J Biochem. 1984 May;95(5):1517–1520. doi: 10.1093/oxfordjournals.jbchem.a134760. [DOI] [PubMed] [Google Scholar]
  8. Itoh K., Mitsuoka T. Characterization of clostridia isolated from faeces of limited flora mice and their effect on caecal size when associated with germ-free mice. Lab Anim. 1985 Apr;19(2):111–118. doi: 10.1258/002367785780942589. [DOI] [PubMed] [Google Scholar]
  9. Itoh K., Mitsuoka T. Production of gnotobiotic mice with normal physiological functions. I. Selection of useful bacteria from feces of conventional mice. Z Versuchstierkd. 1980;22(3):173–178. [PubMed] [Google Scholar]
  10. Kawaguchi M., Nanno M., Umesaki Y., Matsumoto S., Okada Y., Cai Z., Shimamura T., Matsuoka Y., Ohwaki M., Ishikawa H. Cytolytic activity of intestinal intraepithelial lymphocytes in germ-free mice is strain dependent and determined by T cells expressing gamma delta T-cell antigen receptors. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8591–8594. doi: 10.1073/pnas.90.18.8591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klaasen H. L., Koopman J. P., Poelma F. G., Beynen A. C. Intestinal, segmented, filamentous bacteria. FEMS Microbiol Rev. 1992 Jun;8(3-4):165–180. doi: 10.1111/j.1574-6968.1992.tb04986.x. [DOI] [PubMed] [Google Scholar]
  12. Klaasen H. L., Koopman J. P., Van den Brink M. E., Van Wezel H. P., Beynen A. C. Mono-association of mice with non-cultivable, intestinal, segmented, filamentous bacteria. Arch Microbiol. 1991;156(2):148–151. doi: 10.1007/BF00290989. [DOI] [PubMed] [Google Scholar]
  13. Klaasen H. L., Van der Heijden P. J., Stok W., Poelma F. G., Koopman J. P., Van den Brink M. E., Bakker M. H., Eling W. M., Beynen A. C. Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. Infect Immun. 1993 Jan;61(1):303–306. doi: 10.1128/iai.61.1.303-306.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koopman J. P., Kennis H. M., Mullink J. W., Prins R. A., Stadhouders A. M., De Boer H., Hectors M. P. 'Normalization' of germfree mice with anaerobically cultured caecal flora of 'normal' mice. Lab Anim. 1984 Apr;18(2):188–194. doi: 10.1258/002367784780891253. [DOI] [PubMed] [Google Scholar]
  15. Matsumoto S., Setoyama H., Umesaki Y. Differential induction of major histocompatibility complex molecules on mouse intestine by bacterial colonization. Gastroenterology. 1992 Dec;103(6):1777–1782. doi: 10.1016/0016-5085(92)91434-6. [DOI] [PubMed] [Google Scholar]
  16. Syed S. A., Abrams G. D., Freter R. Efficiency of various intestinal bacteria in assuming normal functions of enteric flora after association with germ-free mice. Infect Immun. 1970 Oct;2(4):376–386. doi: 10.1128/iai.2.4.376-386.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Umesaki Y., Sakata T., Yajima T. Abrupt induction of GDP-fucose: asialo GM1 fucosyltransferase in the small intestine after conventionalization of germ-free mice. Biochem Biophys Res Commun. 1982 Mar 30;105(2):439–443. doi: 10.1016/0006-291x(82)91453-x. [DOI] [PubMed] [Google Scholar]
  18. Umesaki Y., Setoyama H., Matsumoto S., Okada Y. Expansion of alpha beta T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology. 1993 May;79(1):32–37. [PMC free article] [PubMed] [Google Scholar]
  19. Umesaki Y., Suzuki A., Kasama T., Tohyama K., Mutai M., Yamakawa T. Presence of asialo GM1 and glucosylceramide in the intestinal mucosa of mice and induction of fucosyl asialo GM1 by conventionalization of germ-free mice. J Biochem. 1981 Dec;90(6):1731–1738. doi: 10.1093/oxfordjournals.jbchem.a133650. [DOI] [PubMed] [Google Scholar]
  20. Umesaki Y., Tohyama K., Mutai M. Appearance of fucolipid after conventionalization of germ-free mice. J Biochem. 1981 Aug;90(2):559–561. doi: 10.1093/oxfordjournals.jbchem.a133506. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES