Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1994 Dec;62(12):5581–5586. doi: 10.1128/iai.62.12.5581-5586.1994

Natural variation within the principal adhesion domain of the Plasmodium vivax duffy binding protein.

T Tsuboi 1, S H Kappe 1, F al-Yaman 1, M D Prickett 1, M Alpers 1, J H Adams 1
PMCID: PMC303305  PMID: 7960140

Abstract

The blood-stage development of malaria parasites is initiated by the invasion of merozoites into susceptible erythrocytes. Specific receptor-ligand interactions must occur for the merozoites to first attach to and then invade erythrocytes. Because the invasion process is essential for the parasite's survival and the merozoite adhesion molecules are exposed on the merozoite surface during invasion, these adhesion molecules are candidates for antibody-dependent malaria vaccines. The Duffy binding protein of Plasmodium vivax belongs to a family of erythrocyte-binding proteins that contain functionally conserved cysteine-rich regions. The amino cysteine-rich regions of these homologous erythrocyte-binding proteins were recently identified for P. vivax, Plasmodium knowlesi, and Plasmodium falciparum as the principal erythrocyte-binding domains (C. Chitnis and L. H. Miller, J. Exp. Med. 180:497-506, 1994, and B. K. L. Sim, C. E. Chitnis, K. Wasniowska, T. J. Hadley, and L. H. Miller, Science 264:1941-1944, 1994). We report that amino acids in this critical ligand domain of the P. vivax Duffy binding protein are hypervariable, but this variability is limited. Hypervariability of the erythrocyte-binding domain suggests that this domain is the target of an effective immune response, but conservation of amino acid substitutions indicates that functional constraints limit this variation. In addition, the amino cysteine-rich region and part of the hydrophilic region immediately following it were the site of repeated homologous recombinations as represented by tandem repeat sequence polymorphisms. Similar polymorphisms have been identified in the same region of the homologous genes of P. falciparum and P. knowlesi, suggesting that there is a common mechanism of recombination or gene conversion that occurs in these Plasmodium genes.

Full text

PDF
5581

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. H., Hudson D. E., Torii M., Ward G. E., Wellems T. E., Aikawa M., Miller L. H. The Duffy receptor family of Plasmodium knowlesi is located within the micronemes of invasive malaria merozoites. Cell. 1990 Oct 5;63(1):141–153. doi: 10.1016/0092-8674(90)90295-p. [DOI] [PubMed] [Google Scholar]
  2. Adams J. H., Sim B. K., Dolan S. A., Fang X., Kaslow D. C., Miller L. H. A family of erythrocyte binding proteins of malaria parasites. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7085–7089. doi: 10.1073/pnas.89.15.7085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnwell J. W., Nichols M. E., Rubinstein P. In vitro evaluation of the role of the Duffy blood group in erythrocyte invasion by Plasmodium vivax. J Exp Med. 1989 May 1;169(5):1795–1802. doi: 10.1084/jem.169.5.1795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Camus D., Hadley T. J. A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science. 1985 Nov 1;230(4725):553–556. doi: 10.1126/science.3901257. [DOI] [PubMed] [Google Scholar]
  5. Chitnis C. E., Miller L. H. Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J Exp Med. 1994 Aug 1;180(2):497–506. doi: 10.1084/jem.180.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dolan S. A., Miller L. H., Wellems T. E. Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum. J Clin Invest. 1990 Aug;86(2):618–624. doi: 10.1172/JCI114753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dolan S. A., Proctor J. L., Alling D. W., Okubo Y., Wellems T. E., Miller L. H. Glycophorin B as an EBA-175 independent Plasmodium falciparum receptor of human erythrocytes. Mol Biochem Parasitol. 1994 Mar;64(1):55–63. doi: 10.1016/0166-6851(94)90134-1. [DOI] [PubMed] [Google Scholar]
  8. Fang X. D., Kaslow D. C., Adams J. H., Miller L. H. Cloning of the Plasmodium vivax Duffy receptor. Mol Biochem Parasitol. 1991 Jan;44(1):125–132. doi: 10.1016/0166-6851(91)90228-x. [DOI] [PubMed] [Google Scholar]
  9. Fitch W. M., Leiter J. M., Li X. Q., Palese P. Positive Darwinian evolution in human influenza A viruses. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4270–4274. doi: 10.1073/pnas.88.10.4270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Galinski M. R., Medina C. C., Ingravallo P., Barnwell J. W. A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell. 1992 Jun 26;69(7):1213–1226. doi: 10.1016/0092-8674(92)90642-p. [DOI] [PubMed] [Google Scholar]
  11. Haynes J. D., Dalton J. P., Klotz F. W., McGinniss M. H., Hadley T. J., Hudson D. E., Miller L. H. Receptor-like specificity of a Plasmodium knowlesi malarial protein that binds to Duffy antigen ligands on erythrocytes. J Exp Med. 1988 Jun 1;167(6):1873–1881. doi: 10.1084/jem.167.6.1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miller L. H., Hudson D., Haynes J. D. Identification of Plasmodium knowlesi erythrocyte binding proteins. Mol Biochem Parasitol. 1988 Dec;31(3):217–222. doi: 10.1016/0166-6851(88)90151-x. [DOI] [PubMed] [Google Scholar]
  13. Miller L. H., Mason S. J., Clyde D. F., McGinniss M. H. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med. 1976 Aug 5;295(6):302–304. doi: 10.1056/NEJM197608052950602. [DOI] [PubMed] [Google Scholar]
  14. Miller L. H., Mason S. J., Dvorak J. A., McGinniss M. H., Rothman I. K. Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science. 1975 Aug 15;189(4202):561–563. doi: 10.1126/science.1145213. [DOI] [PubMed] [Google Scholar]
  15. Mitchell G. H., Hadley T. J., McGinniss M. H., Klotz F. W., Miller L. H. Invasion of erythrocytes by Plasmodium falciparum malaria parasites: evidence for receptor heterogeneity and two receptors. Blood. 1986 May;67(5):1519–1521. [PubMed] [Google Scholar]
  16. Nichols M. E., Rubinstein P., Barnwell J., Rodriguez de Cordoba S., Rosenfield R. E. A new human Duffy blood group specificity defined by a murine monoclonal antibody. Immunogenetics and association with susceptibility to Plasmodium vivax. J Exp Med. 1987 Sep 1;166(3):776–785. doi: 10.1084/jem.166.3.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Orlandi P. A., Klotz F. W., Haynes J. D. A malaria invasion receptor, the 175-kilodalton erythrocyte binding antigen of Plasmodium falciparum recognizes the terminal Neu5Ac(alpha 2-3)Gal- sequences of glycophorin A. J Cell Biol. 1992 Feb;116(4):901–909. doi: 10.1083/jcb.116.4.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Perkins M. E., Holt E. H. Erythrocyte receptor recognition varies in Plasmodium falciparum isolates. Mol Biochem Parasitol. 1988 Jan 1;27(1):23–34. doi: 10.1016/0166-6851(88)90021-7. [DOI] [PubMed] [Google Scholar]
  19. Prickett M. D., Smarz T. R., Adams J. H. Dimorphism and intergenic recombination within the microneme protein (MP-1) gene family of Plasmodium knowlesi. Mol Biochem Parasitol. 1994 Jan;63(1):37–48. doi: 10.1016/0166-6851(94)90006-x. [DOI] [PubMed] [Google Scholar]
  20. Sim B. K., Chitnis C. E., Wasniowska K., Hadley T. J., Miller L. H. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science. 1994 Jun 24;264(5167):1941–1944. doi: 10.1126/science.8009226. [DOI] [PubMed] [Google Scholar]
  21. Sim B. K., Orlandi P. A., Haynes J. D., Klotz F. W., Carter J. M., Camus D., Zegans M. E., Chulay J. D. Primary structure of the 175K Plasmodium falciparum erythrocyte binding antigen and identification of a peptide which elicits antibodies that inhibit malaria merozoite invasion. J Cell Biol. 1990 Nov;111(5 Pt 1):1877–1884. doi: 10.1083/jcb.111.5.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sim B. K., Toyoshima T., Haynes J. D., Aikawa M. Localization of the 175-kilodalton erythrocyte binding antigen in micronemes of Plasmodium falciparum merozoites. Mol Biochem Parasitol. 1992 Mar;51(1):157–159. doi: 10.1016/0166-6851(92)90211-2. [DOI] [PubMed] [Google Scholar]
  23. Ware L. A., Kain K. C., Lee Sim B. K., Haynes J. D., Baird J. K., Lanar D. E. Two alleles of the 175-kilodalton Plasmodium falciparum erythrocyte binding antigen. Mol Biochem Parasitol. 1993 Jul;60(1):105–109. doi: 10.1016/0166-6851(93)90033-t. [DOI] [PubMed] [Google Scholar]
  24. Weis W., Brown J. H., Cusack S., Paulson J. C., Skehel J. J., Wiley D. C. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature. 1988 Jun 2;333(6172):426–431. doi: 10.1038/333426a0. [DOI] [PubMed] [Google Scholar]
  25. Wertheimer S. P., Barnwell J. W. Plasmodium vivax interaction with the human Duffy blood group glycoprotein: identification of a parasite receptor-like protein. Exp Parasitol. 1989 Nov;69(4):340–350. doi: 10.1016/0014-4894(89)90083-0. [DOI] [PubMed] [Google Scholar]
  26. Wilson I. A., Cox N. J. Structural basis of immune recognition of influenza virus hemagglutinin. Annu Rev Immunol. 1990;8:737–771. doi: 10.1146/annurev.iy.08.040190.003513. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES