Abstract
This study investigated the functional capabilities of neutrophils against different Staphylococcus aureus genotypes isolated from cows with mastitis. Six strains of S. aureus were chosen for use in the study, two with a common genotype, two with an intermediate genotype, and two with a rare genotype. The interaction between bacteria and neutrophils was measured by phagocytosis and bactericidal effect. The average percent killing of bacteria was lowest (40.0%) with strains belonging to the most common genotype, medium (50%) with strains belonging to the intermediate type, and highest (64.2%) with strains belonging to the rare type (P < or = 0.001). Statistically significant differences (P < or = 0.001) in the numbers of phagocytized bacteria were also found between the most prevalent type (6.27 bacteria per cell) and the other two types (intermediate type, 9.26/cell; rare type, 10.5/cell). These findings suggest that one of the reasons for the variation in prevalence of different genotypes of S. aureus in the mammary gland is due to the superior ability of some types to resist phagocytosis and/or killing by bovine neutrophils.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson J. C. Mechanisms of staphylococcal virulence in relation to bovine mastitis. Br Vet J. 1976 May-Jun;132(3):229–245. doi: 10.1016/s0007-1935(17)34682-1. [DOI] [PubMed] [Google Scholar]
- Cawdery M., Foster W. D., Hawgood B. C., Taylor C. The role of coagulase in the defence of Staphylococcus aureus against phagocytosis. Br J Exp Pathol. 1969 Aug;50(4):408–412. [PMC free article] [PubMed] [Google Scholar]
- Devriese L. A. A simplified system for biotyping Staphylococcus aureus strains isolated from animal species. J Appl Bacteriol. 1984 Apr;56(2):215–220. doi: 10.1111/j.1365-2672.1984.tb01341.x. [DOI] [PubMed] [Google Scholar]
- Devriese L. A., van de Kerckhove A. A comparison of methods used for testing staphylokinase (fibrinolysin) production in staphylococcus strains. Antonie Van Leeuwenhoek. 1980;46(5):457–465. doi: 10.1007/BF00395826. [DOI] [PubMed] [Google Scholar]
- Glass E., Stewart J., Weir D. M. Presence of bacterial binding 'lectin-like' receptors on phagocytes. Immunology. 1981 Nov;44(3):529–534. [PMC free article] [PubMed] [Google Scholar]
- Hafner M. S., Nadler S. A. Phylogenetic trees support the coevolution of parasites and their hosts. Nature. 1988 Mar 17;332(6161):258–259. doi: 10.1038/332258a0. [DOI] [PubMed] [Google Scholar]
- Johnson W. M., Tyler S. D., Ewan E. P., Ashton F. E., Pollard D. R., Rozee K. R. Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J Clin Microbiol. 1991 Mar;29(3):426–430. doi: 10.1128/jcm.29.3.426-430.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jonsson P., Lindberg M., Haraldsson I., Wadström T. Virulence of Staphylococcus aureus in a mouse mastitis model: studies of alpha hemolysin, coagulase, and protein A as possible virulence determinants with protoplast fusion and gene cloning. Infect Immun. 1985 Sep;49(3):765–769. doi: 10.1128/iai.49.3.765-769.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KAPRAL F. A., LI I. W. Virulence and coagulases of Staphylococcus aureus. Proc Soc Exp Biol Med. 1960 May;104:151–153. doi: 10.3181/00379727-104-25761. [DOI] [PubMed] [Google Scholar]
- Kawano J., Shimizu A., Kimura S. Coagulase typing of Staphylococcus aureus isolated from animals. Zentralbl Bakteriol Mikrobiol Hyg A. 1986 Jul;261(4):407–410. doi: 10.1016/s0176-6724(86)80071-2. [DOI] [PubMed] [Google Scholar]
- Mackie D. P., Pollock D. A., Rodgers S. P., Logan E. F. Phage typing of Staphylococcus aureus associated with subclinical bovine mastitis. J Dairy Res. 1987 Feb;54(1):1–5. doi: 10.1017/s0022029900025139. [DOI] [PubMed] [Google Scholar]
- Masuda S. An efficient method for the isolation of a mutant with an extremely low producibility of coagulase from a Staphylococcus aureus strain. Microbiol Immunol. 1983;27(9):801–805. doi: 10.1111/j.1348-0421.1983.tb00645.x. [DOI] [PubMed] [Google Scholar]
- May R. M., Anderson R. M. Parasite-host coevolution. Parasitology. 1990;100 (Suppl):S89–101. doi: 10.1017/s0031182000073042. [DOI] [PubMed] [Google Scholar]
- Nickerson S. C. Immunological aspects of mammary involution. J Dairy Sci. 1989 Jun;72(6):1665–1678. doi: 10.3168/jds.S0022-0302(89)79278-X. [DOI] [PubMed] [Google Scholar]
- Paape M. J., Wergin W. P., Guidry A. J., Pearson R. E. Leukocytes--second line of defense against invading mastitis pathogens. J Dairy Sci. 1979 Jan;62(1):135–153. doi: 10.3168/jds.S0022-0302(79)83215-4. [DOI] [PubMed] [Google Scholar]
- Phonimdaeng P., O'Reilly M., Nowlan P., Bramley A. J., Foster T. J. The coagulase of Staphylococcus aureus 8325-4. Sequence analysis and virulence of site-specific coagulase-deficient mutants. Mol Microbiol. 1990 Mar;4(3):393–404. doi: 10.1111/j.1365-2958.1990.tb00606.x. [DOI] [PubMed] [Google Scholar]
- Riordan J. M., Nichols F. H. A descriptive study of lactation mastitis in long-term breastfeeding women. J Hum Lact. 1990 Jun;6(2):53–58. doi: 10.1177/089033449000600213. [DOI] [PubMed] [Google Scholar]
- Skalka B., Smola J., Pillich J. A simple method of detecting staphylococcal hemolysins. Zentralbl Bakteriol Orig A. 1979;245(3):283–286. [PubMed] [Google Scholar]
- Stevens M. G., Kehrli M. E., Jr, Canning P. C. A colorimetric assay for quantitating bovine neutrophil bactericidal activity. Vet Immunol Immunopathol. 1991 Mar;28(1):45–56. doi: 10.1016/0165-2427(91)90042-b. [DOI] [PubMed] [Google Scholar]
- Wilson C. D., Richards M. S. A survey of mastitis in the British dairy herd. Vet Rec. 1980 May 24;106(21):431–435. doi: 10.1136/vr.106.21.431. [DOI] [PubMed] [Google Scholar]
- van der Vijver J. C., van Es-Boon M. M., Michel M. F. A study of virulence factors with induced mutants of Staphylococcus aureus. J Med Microbiol. 1975 May;8(2):279–287. doi: 10.1099/00222615-8-2-279. [DOI] [PubMed] [Google Scholar]