Abstract
The relationships between contractile function, myocardial oxygen consumption, and tissue high energy phosphate and lactate content were investigated during partial coronary flow disruption. The experimental preparation was an isolated, isovolumic retrograde blood-perfused rabbit heart. Both developed pressure (r = 0.94) and dp/dt (r = 0.95) exhibited strong linear correlations with myocardial oxygen consumption that were stable for up to 45 min after blood flow reduction. In contrast, tissue high energy phosphate content exhibited nonlinear relationships with both developed pressure and oxygen consumption such that systolic mechanical function and oxidative metabolism declined to 20 and 30% of control values, respectively, before significant abnormalities in myocardial high energy phosphate stores were observed. Similarly, developed pressure and oxygen consumption decreased to 36 and 48% of control, respectively, before abnormal tissue lactate content was detected. The results of this study indicate that: (a) mechanical function is closely related to the rate of oxidative energy production during partial coronary flow disruption, and (b) despite the development of significant contractile dysfunction, tissue high energy phosphate content remains at normal levels except under the most severely flow-deprived conditions. The preservation of tissue energy stores can be explained by the apparent coupling of contractile performance to oxidative energy production, which could function to maintain myocardial energy balance during partial coronary flow restriction.
Full text
PDF![86](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d113/303480/366c83e06180/jcinvest00079-0094.png)
![87](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d113/303480/1898168806dd/jcinvest00079-0095.png)
![88](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d113/303480/987442703ee3/jcinvest00079-0096.png)
![89](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d113/303480/e9896c5075d9/jcinvest00079-0097.png)
![90](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d113/303480/8787ab39299b/jcinvest00079-0098.png)
![91](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d113/303480/a3b0ab60e980/jcinvest00079-0099.png)
![92](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d113/303480/df6d557bd1fe/jcinvest00079-0100.png)
![93](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d113/303480/8a130eabf556/jcinvest00079-0101.png)
![94](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d113/303480/ef1f82d47913/jcinvest00079-0102.png)
![95](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d113/303480/bf171b3bb16d/jcinvest00079-0103.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apstein C. S., Dennis R. C., Briggs L., Vogel W. M., Frazer J., Valeri C. R. Effect of erythrocyte storage and oxyhemoglobin affinity changes on cardiac function. Am J Physiol. 1985 Apr;248(4 Pt 2):H508–H515. doi: 10.1152/ajpheart.1985.248.4.H508. [DOI] [PubMed] [Google Scholar]
- Bergmann S. R., Clark R. E., Sobel B. E. An improved isolated heart preparation for external assessment of myocardial metabolism. Am J Physiol. 1979 Apr;236(4):H644–H661. doi: 10.1152/ajpheart.1979.236.4.H644. [DOI] [PubMed] [Google Scholar]
- Bittl J. A., Balschi J. A., Ingwall J. S. Contractile failure and high-energy phosphate turnover during hypoxia: 31P-NMR surface coil studies in living rat. Circ Res. 1987 Jun;60(6):871–878. doi: 10.1161/01.res.60.6.871. [DOI] [PubMed] [Google Scholar]
- Dhalla N. S., Yates J. C., Walz D. A., McDonald V. A., Olson R. E. Correlation between changes in the endogenous energy stores and myocardial function due to hypoxia in the isolated perfused rat heart. Can J Physiol Pharmacol. 1972 Apr;50(4):333–345. doi: 10.1139/y72-050. [DOI] [PubMed] [Google Scholar]
- FEINSTEIN M. B. Effects of experimental congestive heart failure, ouabain, and asphyxia on the high-energy phosphate and creatine content of the guinea pig heart. Circ Res. 1962 Mar;10:333–346. doi: 10.1161/01.res.10.3.333. [DOI] [PubMed] [Google Scholar]
- Falsetti H. L., Mates R. E., Carroll R. J., Gupta R. L., Bell A. C. Analysis and correction of pressure wave distortion in fluid-filled catheter systems. Circulation. 1974 Jan;49(1):165–172. doi: 10.1161/01.cir.49.1.165. [DOI] [PubMed] [Google Scholar]
- Gallagher K. P., Matsuzaki M., Osakada G., Kemper W. S., Ross J., Jr Effect of exercise on the relationship between myocardial blood flow and systolic wall thickening in dogs with acute coronary stenosis. Circ Res. 1983 Jun;52(6):716–729. doi: 10.1161/01.res.52.6.716. [DOI] [PubMed] [Google Scholar]
- Gudbjarnason S., Mathes P., Ravens K. G. Functional compartmentation of ATP and creatine phosphate in heart muscle. J Mol Cell Cardiol. 1970 Sep;1(3):325–339. doi: 10.1016/0022-2828(70)90009-x. [DOI] [PubMed] [Google Scholar]
- Hearse D. J. Oxygen deprivation and early myocardial contractile failure: a reassessment of the possible role of adenosine triphosphate. Am J Cardiol. 1979 Nov;44(6):1115–1121. doi: 10.1016/0002-9149(79)90177-2. [DOI] [PubMed] [Google Scholar]
- Jones C. E., Thomas J. X., Parker J. C., Parker R. E. Acute changes in high energy phosphates, nucleotide derivatives, and contractile force in ischaemic and nonischaemic canine myocardium following coronary occlusion. Cardiovasc Res. 1976 May;10(3):275–282. doi: 10.1093/cvr/10.3.275. [DOI] [PubMed] [Google Scholar]
- Karz A. M. Effects of interrupted coronary flow upon myocardial metabolism and contractility. Prog Cardiovasc Dis. 1968 Mar;10(5):450–465. doi: 10.1016/s0033-0620(68)80003-9. [DOI] [PubMed] [Google Scholar]
- Katz A. M., Hecht H. H. Editorial: the early "pump" failure of the ischemic heart. Am J Med. 1969 Oct;47(4):497–502. doi: 10.1016/0002-9343(69)90180-6. [DOI] [PubMed] [Google Scholar]
- Kusuoka H., Weisfeldt M. L., Zweier J. L., Jacobus W. E., Marban E. Mechanism of early contractile failure during hypoxia in intact ferret heart: evidence for modulation of maximal Ca2+-activated force by inorganic phosphate. Circ Res. 1986 Sep;59(3):270–282. doi: 10.1161/01.res.59.3.270. [DOI] [PubMed] [Google Scholar]
- Marshall R. C., Nash W. W., Bersohn M. M., Wong G. A. Myocardial energy production and consumption remain balanced during positive inotropic stimulation when coronary flow is restricted to basal rates in rabbit heart. J Clin Invest. 1987 Oct;80(4):1165–1171. doi: 10.1172/JCI113175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews P. M., Taylor D. J., Radda G. K. Biochemical mechanisms of acute contractile failure in the hypoxic rat heart. Cardiovasc Res. 1986 Jan;20(1):13–19. doi: 10.1093/cvr/20.1.13. [DOI] [PubMed] [Google Scholar]
- Neely J. R., Grotyohann L. W. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ Res. 1984 Dec;55(6):816–824. doi: 10.1161/01.res.55.6.816. [DOI] [PubMed] [Google Scholar]
- Pool P. E., Covell J. W., Chidsey C. A., Braunwald E. Myocardial high energy phosphate stores in acutely induced hypoxic heart failure. Circ Res. 1966 Aug;19(2):221–229. doi: 10.1161/01.res.19.2.221. [DOI] [PubMed] [Google Scholar]
- Stowe D. F., Mathey D. G., Moores W. Y., Glantz S. A., Townsend R. M., Kabra P., Chatterjee K., Parmley W. W., Tyberg J. V. Segment stroke work and metabolism depend on coronary blood flow in the pig. Am J Physiol. 1978 May;234(5):H597–H607. doi: 10.1152/ajpheart.1978.234.5.H597. [DOI] [PubMed] [Google Scholar]
- Vatner S. F. Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res. 1980 Aug;47(2):201–207. doi: 10.1161/01.res.47.2.201. [DOI] [PubMed] [Google Scholar]
- Vogel W. M., Apstein C. S., Briggs L. L., Gaasch W. H., Ahn J. Acute alterations in left ventricular diastolic chamber stiffness. Role of the "erectile" effect of coronary arterial pressure and flow in normal and damaged hearts. Circ Res. 1982 Oct;51(4):465–478. doi: 10.1161/01.res.51.4.465. [DOI] [PubMed] [Google Scholar]
- WILKIE D. R. Thermodynamics and the interpretation of biological heat measurements. Prog Biophys Mol Biol. 1960;10:259–298. [PubMed] [Google Scholar]
- Waters D. D., Da Luz P., Wyatt H. L., Swan H. J., Forrester J. S. Early changes in regional and global left ventricular function induced by graded reductions in regional coronary perfusion. Am J Cardiol. 1977 Apr;39(4):537–543. doi: 10.1016/s0002-9149(77)80163-x. [DOI] [PubMed] [Google Scholar]
- Winegrad S. Regulation of cardiac contractile proteins. Correlations between physiology and biochemistry. Circ Res. 1984 Nov;55(5):565–574. doi: 10.1161/01.res.55.5.565. [DOI] [PubMed] [Google Scholar]
- de Jong J. W., Goldstein S. Changes in coronary venous inosine concentration and myocardial wall thickening during regional ischemia in the pig. Circ Res. 1974 Jul;35(1):111–116. doi: 10.1161/01.res.35.1.111. [DOI] [PubMed] [Google Scholar]