Abstract
The pathophysiological significance of the glucose-fatty acid cycle in skeletal muscle in vivo is uncertain. We have examined the short term effects of increased availability of nonesterified FFA on tissue-specific glucose uptake and storage in rat tissues in vivo basally and during a hyperinsulinemic (150 mU/liter) euglycemic clamp. Circulating FFA were elevated to 2 mmol/liter (FFA 1) or 4 mmol/liter (FFA 2). Elevated FFA produced a dose-dependent inhibition of myocardial glucose utilization in both basal (FFA1, 42%; FFA2, 68%; P less than 0.001, by analysis of variance) and clamp groups (FFA1, 39%; FFA2, 49%; P less than 0.001) and also suppressed brown adipose tissue glucose utilization during the clamp (-42%, P less than 0.001). In contrast to heart, glucose utilization in skeletal muscle was suppressed by FFA only in the FFA1 basal group (-36%, P less than 0.001); in other groups (e.g., FFA2 clamp) elevated FFA produced increased skeletal muscle glucose utilization (+68%, P less than 0.001) that was directed toward glycogen (+175%, P less than 0.05) and lipid deposition (+125%, P less than 0.005). FFA stimulated basal glucose utilization in white (e.g., FFA2, +220%, P less than 0.005) and brown adipose tissue (e.g., FFA2, +200%, P less than 0.005). Thus elevated FFA can acutely inhibit glucose utilization in skeletal muscle in addition to cardiac muscle in vivo supporting a possible role for the glucose-fatty acid cycle in skeletal muscle in acute insulin resistance. However, at high levels or with elevated insulin, FFA stimulates glucose utilization and storage in skeletal muscle. By promoting accumulation of glucose storage products, chronic elevation of FFA may lead to skeletal muscle (and therefore whole body) insulin resistance.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bevilacqua S., Bonadonna R., Buzzigoli G., Boni C., Ciociaro D., Maccari F., Giorico M. A., Ferrannini E. Acute elevation of free fatty acid levels leads to hepatic insulin resistance in obese subjects. Metabolism. 1987 May;36(5):502–506. doi: 10.1016/0026-0495(87)90051-5. [DOI] [PubMed] [Google Scholar]
- Crettaz M., Horton E. S., Wardzala L. J., Horton E. D., Jeanrenaud B. Physical training of Zucker rats: lack of alleviation of muscle insulin resistance. Am J Physiol. 1983 Apr;244(4):E414–E420. doi: 10.1152/ajpendo.1983.244.4.E414. [DOI] [PubMed] [Google Scholar]
- Ferrannini E., Barrett E. J., Bevilacqua S., DeFronzo R. A. Effect of fatty acids on glucose production and utilization in man. J Clin Invest. 1983 Nov;72(5):1737–1747. doi: 10.1172/JCI111133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferré P., Leturque A., Burnol A. F., Penicaud L., Girard J. A method to quantify glucose utilization in vivo in skeletal muscle and white adipose tissue of the anaesthetized rat. Biochem J. 1985 May 15;228(1):103–110. doi: 10.1042/bj2280103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HALES C. N., RANDLE P. J. Effects of low-carbohydrate diet and diabetes mellitus on plasma concentrations of glucose, non-esterified fatty acid, and insulin during oral glucose-tolerance tests. Lancet. 1963 Apr 13;1(7285):790–794. doi: 10.1016/s0140-6736(63)91501-0. [DOI] [PubMed] [Google Scholar]
- Himms-Hagen J. Thermogenesis in brown adipose tissue as an energy buffer. Implications for obesity. N Engl J Med. 1984 Dec 13;311(24):1549–1558. doi: 10.1056/NEJM198412133112407. [DOI] [PubMed] [Google Scholar]
- Hogan S., Coscina D. V., Himms-Hagen J. Brown adipose tissue of rats with obesity-inducing ventromedial hypothalamic lesions. Am J Physiol. 1982 Oct;243(4):E338–E344. doi: 10.1152/ajpendo.1982.243.4.E338. [DOI] [PubMed] [Google Scholar]
- Idström J. P., Rennie M. J., Scherstén T., Bylund-Fellenius A. C. Membrane transport in relation to net uptake of glucose in the perfused rat hindlimb. Stimulatory effect of insulin, hypoxia and contractile activity. Biochem J. 1986 Jan 1;233(1):131–137. doi: 10.1042/bj2330131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James D. E., Burleigh K. M., Kraegen E. W. In vivo glucose metabolism in individual tissues of the rat. Interaction between epinephrine and insulin. J Biol Chem. 1986 May 15;261(14):6366–6374. [PubMed] [Google Scholar]
- James D. E., Burleigh K. M., Storlien L. H., Bennett S. P., Kraegen E. W. Heterogeneity of insulin action in muscle: influence of blood flow. Am J Physiol. 1986 Oct;251(4 Pt 1):E422–E430. doi: 10.1152/ajpendo.1986.251.4.E422. [DOI] [PubMed] [Google Scholar]
- James D. E., Kraegen E. W., Chisholm D. J. Effects of exercise training on in vivo insulin action in individual tissues of the rat. J Clin Invest. 1985 Aug;76(2):657–666. doi: 10.1172/JCI112019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenkins A. B., Furler S. M., Kraegen E. W. 2-deoxy-D-glucose metabolism in individual tissues of the rat in vivo. Int J Biochem. 1986;18(4):311–318. doi: 10.1016/0020-711x(86)90036-4. [DOI] [PubMed] [Google Scholar]
- Joost H. G., Steinfelder H. J. Insulin-like stimulation of glucose transport in isolated adipocytes by fatty acids. Biochem Biophys Res Commun. 1985 May 16;128(3):1358–1363. doi: 10.1016/0006-291x(85)91090-3. [DOI] [PubMed] [Google Scholar]
- Kraegen E. W., James D. E., Bennett S. P., Chisholm D. J. In vivo insulin sensitivity in the rat determined by euglycemic clamp. Am J Physiol. 1983 Jul;245(1):E1–E7. doi: 10.1152/ajpendo.1983.245.1.E1. [DOI] [PubMed] [Google Scholar]
- Kraegen E. W., James D. E., Jenkins A. B., Chisholm D. J. Dose-response curves for in vivo insulin sensitivity in individual tissues in rats. Am J Physiol. 1985 Mar;248(3 Pt 1):E353–E362. doi: 10.1152/ajpendo.1985.248.3.E353. [DOI] [PubMed] [Google Scholar]
- Lillioja S., Bogardus C., Mott D. M., Kennedy A. L., Knowler W. C., Howard B. V. Relationship between insulin-mediated glucose disposal and lipid metabolism in man. J Clin Invest. 1985 Apr;75(4):1106–1115. doi: 10.1172/JCI111804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCormack J. G., Gibbins J. M., Denton R. M. Lipogenesis in brown adipose tissue and its regulation. Biochem Soc Trans. 1986 Apr;14(2):227–230. doi: 10.1042/bst0140227. [DOI] [PubMed] [Google Scholar]
- Mott D. M., Lillioja S., Bogardus C. Overnutrition induced decrease in insulin action for glucose storage: in vivo and in vitro in man. Metabolism. 1986 Feb;35(2):160–165. doi: 10.1016/0026-0495(86)90118-6. [DOI] [PubMed] [Google Scholar]
- Nicholls D. G., Locke R. M. Thermogenic mechanisms in brown fat. Physiol Rev. 1984 Jan;64(1):1–64. doi: 10.1152/physrev.1984.64.1.1. [DOI] [PubMed] [Google Scholar]
- Pardridge W. M., Crane P. D., Mietus L. J., Oldendorf W. H. Kinetics of regional blood-brain barrier transport and brain phosphorylation of glucose and 2-deoxyglucose the barbiturate-anesthetized rat. J Neurochem. 1982 Feb;38(2):560–568. doi: 10.1111/j.1471-4159.1982.tb08663.x. [DOI] [PubMed] [Google Scholar]
- RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
- Randle P. J., Newsholme E. A., Garland P. B. Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem J. 1964 Dec;93(3):652–665. doi: 10.1042/bj0930652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ravussin E., Bogardus C., Scheidegger K., LaGrange B., Horton E. D., Horton E. S. Effect of elevated FFA on carbohydrate and lipid oxidation during prolonged exercise in humans. J Appl Physiol (1985) 1986 Mar;60(3):893–900. doi: 10.1152/jappl.1986.60.3.893. [DOI] [PubMed] [Google Scholar]
- Segal K. R., Gutin B., Nyman A. M., Pi-Sunyer F. X. Thermic effect of food at rest, during exercise, and after exercise in lean and obese men of similar body weight. J Clin Invest. 1985 Sep;76(3):1107–1112. doi: 10.1172/JCI112065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shafrir E. Intermediary metabolism during the development of obesity and diabetes in the desert rodent Acomys cahirinus. Int J Obes. 1982;6 (Suppl 1):9–20. [PubMed] [Google Scholar]
- Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
- Storlien L. H., James D. E., Burleigh K. M., Chisholm D. J., Kraegen E. W. Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. Am J Physiol. 1986 Nov;251(5 Pt 1):E576–E583. doi: 10.1152/ajpendo.1986.251.5.E576. [DOI] [PubMed] [Google Scholar]
- Triandafillou J., Himms-Hagen J. Brown adipose tissue in genetically obese (fa/fa) rats: response to cold and diet. Am J Physiol. 1983 Feb;244(2):E145–E150. doi: 10.1152/ajpendo.1983.244.2.E145. [DOI] [PubMed] [Google Scholar]
- Wisneski J. A., Gertz E. W., Neese R. A., Gruenke L. D., Morris D. L., Craig J. C. Metabolic fate of extracted glucose in normal human myocardium. J Clin Invest. 1985 Nov;76(5):1819–1827. doi: 10.1172/JCI112174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zorzano A., Balon T. W., Brady L. J., Rivera P., Garetto L. P., Young J. C., Goodman M. N., Ruderman N. B. Effects of starvation and exercise on concentrations of citrate, hexose phosphates and glycogen in skeletal muscle and heart. Evidence for selective operation of the glucose-fatty acid cycle. Biochem J. 1985 Dec 1;232(2):585–591. doi: 10.1042/bj2320585. [DOI] [PMC free article] [PubMed] [Google Scholar]