Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Aug;82(2):388–393. doi: 10.1172/JCI113610

Atrial natriuretic factor reduces cyclic adenosine monophosphate content of human fibroblasts by enhancing phosphodiesterase activity.

M A Lee 1, R E West Jr 1, J Moss 1
PMCID: PMC303526  PMID: 2457032

Abstract

Radioligand binding studies disclosed one class of high affinity atrial natriuretic factor (ANF) receptors on human fibroblast membranes (Kd = 66 pM; maximum number of binding sites [Bmax] = 7,000 sites/cell). ANF increased cellular cyclic guanosine monophosphate (cGMP) content and suppressed isoproterenol- and PGE1-elevated, but not basal, cAMP content. Pertussis toxin pretreatment, which maximally ADP-ribosylated Gi, the guanine nucleotide-binding protein that couples inhibitory receptors to adenylate cyclase and blocks receptor-mediated inhibition of adenylate cyclase, did not interfere with ANF suppression of isoproterenol- or PGE1-elevated cellular cAMP content. Preliminary incubation of fibroblasts with 8-bromo cGMP or phosphodiesterase inhibitors, including 3-isobutyl-1-methylxanthine, Ro 20-1724, and cilostamide, however, prevented the ANF suppression of cAMP. MB 22948, an inhibitor that is partially selective for cGMP phosphodiesterase, did not block the effect of ANF. We conclude that in these cells, unlike other systems, ANF reduces cAMP content by activating a phosphodiesterase rather than by inhibiting adenylate cyclase.

Full text

PDF
388

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anand-Srivastava M. B., Cantin M., Genest J. Inhibition of pituitary adenylate cyclase by atrial natriuretic factor. Life Sci. 1985 May 13;36(19):1873–1879. doi: 10.1016/0024-3205(85)90161-4. [DOI] [PubMed] [Google Scholar]
  2. Anand-Srivastava M. B., Franks D. J., Cantin M., Genest J. Atrial natriuretic factor inhibits adenylate cyclase activity. Biochem Biophys Res Commun. 1984 Jun 29;121(3):855–862. doi: 10.1016/0006-291x(84)90756-3. [DOI] [PubMed] [Google Scholar]
  3. Anand-Srivastava M. B., Genest J., Cantin M. Inhibitory effect of atrial natriuretic factor on adenylate cyclase activity in adrenal cortical membranes. FEBS Lett. 1985 Feb 25;181(2):199–202. doi: 10.1016/0014-5793(85)80259-3. [DOI] [PubMed] [Google Scholar]
  4. Anand-Srivastava M. B., Vinay P., Genest J., Cantin M. Effect of atrial natriuretic factor on adenylate cyclase in various nephron segments. Am J Physiol. 1986 Sep;251(3 Pt 2):F417–F423. doi: 10.1152/ajprenal.1986.251.3.F417. [DOI] [PubMed] [Google Scholar]
  5. Atarashi K., Mulrow P. J., Franco-Saenz R., Snajdar R., Rapp J. Inhibition of aldosterone production by an atrial extract. Science. 1984 Jun 1;224(4652):992–994. doi: 10.1126/science.6326267. [DOI] [PubMed] [Google Scholar]
  6. Ballerman B. J., Brenner B. M. Biologically active atrial peptides. J Clin Invest. 1985 Dec;76(6):2041–2048. doi: 10.1172/JCI112206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ballermann B. J., Hoover R. L., Karnovsky M. J., Brenner B. M. Physiologic regulation of atrial natriuretic peptide receptors in rat renal glomeruli. J Clin Invest. 1985 Dec;76(6):2049–2056. doi: 10.1172/JCI112207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Beavo J. A., Hansen R. S., Harrison S. A., Hurwitz R. L., Martins T. J., Mumby M. C. Identification and properties of cyclic nucleotide phosphodiesterases. Mol Cell Endocrinol. 1982 Nov-Dec;28(3):387–410. doi: 10.1016/0303-7207(82)90135-6. [DOI] [PubMed] [Google Scholar]
  9. Bruns R. F., Lawson-Wendling K., Pugsley T. A. A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal Biochem. 1983 Jul 1;132(1):74–81. doi: 10.1016/0003-2697(83)90427-x. [DOI] [PubMed] [Google Scholar]
  10. Chartier L., Schiffrin E., Thibault G. Effect of atrial natriuretic factor (ANF)-related peptides on aldosterone secretion by adrenal glomerulosa cells: critical role of the intramolecular disulphide bond. Biochem Biophys Res Commun. 1984 Jul 18;122(1):171–174. doi: 10.1016/0006-291x(84)90455-8. [DOI] [PubMed] [Google Scholar]
  11. Currie M. G., Geller D. M., Cole B. R., Boylan J. G., YuSheng W., Holmberg S. W., Needleman P. Bioactive cardiac substances: potent vasorelaxant activity in mammalian atria. Science. 1983 Jul 1;221(4605):71–73. doi: 10.1126/science.6857267. [DOI] [PubMed] [Google Scholar]
  12. Currie M. G., Geller D. M., Cole B. R., Siegel N. R., Fok K. F., Adams S. P., Eubanks S. R., Galluppi G. R., Needleman P. Purification and sequence analysis of bioactive atrial peptides (atriopeptins). Science. 1984 Jan 6;223(4631):67–69. doi: 10.1126/science.6419347. [DOI] [PubMed] [Google Scholar]
  13. De Léan A., Racz K., Gutkowska J., Nguyen T. T., Cantin M., Genest J. Specific receptor-mediated inhibition by synthetic atrial natriuretic factor of hormone-stimulated steroidogenesis in cultured bovine adrenal cells. Endocrinology. 1984 Oct;115(4):1636–1638. doi: 10.1210/endo-115-4-1636. [DOI] [PubMed] [Google Scholar]
  14. Gilman A. G. G proteins and dual control of adenylate cyclase. Cell. 1984 Mar;36(3):577–579. doi: 10.1016/0092-8674(84)90336-2. [DOI] [PubMed] [Google Scholar]
  15. Gross R. A., Clark R. B. Regulation of adenosine 3',5'-monophosphate content in human astrocytoma cells by isoproterenol and carbachol. Mol Pharmacol. 1977 Mar;13(2):242–250. [PubMed] [Google Scholar]
  16. Hamet P., Tremblay J., Pang S. C., Garcia R., Thibault G., Gutkowska J., Cantin M., Genest J. Effect of native and synthetic atrial natriuretic factor on cyclic GMP. Biochem Biophys Res Commun. 1984 Sep 17;123(2):515–527. doi: 10.1016/0006-291x(84)90260-2. [DOI] [PubMed] [Google Scholar]
  17. Hirata Y., Tomita M., Yoshimi H., Ikeda M. Specific receptors for atrial natriuretic factor (ANF) in cultured vascular smooth muscle cells of rat aorta. Biochem Biophys Res Commun. 1984 Dec 14;125(2):562–568. doi: 10.1016/0006-291x(84)90576-x. [DOI] [PubMed] [Google Scholar]
  18. Hsia J. A., Hewlett E. L., Moss J. Heterologous desensitization of adenylate cyclase with prostaglandin E1 alters sensitivity to inhibitory as well as stimulatory agonists. J Biol Chem. 1985 Apr 25;260(8):4922–4926. [PubMed] [Google Scholar]
  19. Hughes A. R., Martin M. W., Harden T. K. Pertussis toxin differentiates between two mechanisms of attenuation of cyclic AMP accumulation by muscarinic cholinergic receptors. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5680–5684. doi: 10.1073/pnas.81.18.5680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hunter T. A thousand and one protein kinases. Cell. 1987 Sep 11;50(6):823–829. doi: 10.1016/0092-8674(87)90509-5. [DOI] [PubMed] [Google Scholar]
  21. Ishikawa S., Saito T., Okada K., Kuzuya T., Kangawa K., Matsuo H. Atrial natriuretic factor increases cyclic GMP and inhibits cyclic AMP in rat renal papillary collecting tubule cells in culture. Biochem Biophys Res Commun. 1985 Aug 15;130(3):1147–1153. doi: 10.1016/0006-291x(85)91735-8. [DOI] [PubMed] [Google Scholar]
  22. Kuno T., Andresen J. W., Kamisaki Y., Waldman S. A., Chang L. Y., Saheki S., Leitman D. C., Nakane M., Murad F. Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J Biol Chem. 1986 May 5;261(13):5817–5823. [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Manganiello V. C., Breslow J. Effects of prostaglandin E1 and isoproterenol on cyclic AMP content of human fibroblasts modified by time and cell density in subculture. Biochim Biophys Acta. 1974 Oct 8;362(3):509–520. doi: 10.1016/0304-4165(74)90146-9. [DOI] [PubMed] [Google Scholar]
  25. Meeker R. B., Harden T. K. Muscarinic cholinergic receptor-mediated activation of phosphodiesterase. Mol Pharmacol. 1982 Sep;22(2):310–319. [PubMed] [Google Scholar]
  26. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  27. Nathanson N. M., Klein W. L., Nirenberg M. Regulation of adenylate cyclase activity mediated by muscarinic acetylcholine receptors. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1788–1791. doi: 10.1073/pnas.75.4.1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Obana K., Naruse M., Naruse K., Sakurai H., Demura H., Inagami T., Shizume K. Synthetic rat atrial natriuretic factor inhibits in vitro and in vivo renin secretion in rats. Endocrinology. 1985 Sep;117(3):1282–1284. doi: 10.1210/endo-117-3-1282. [DOI] [PubMed] [Google Scholar]
  29. Sonnenberg H., Cupples W. A., de Bold A. J., Veress A. T. Intrarenal localization of the natriuretic effect of cardiac atrial extract. Can J Physiol Pharmacol. 1982 Sep;60(9):1149–1152. doi: 10.1139/y82-166. [DOI] [PubMed] [Google Scholar]
  30. Takeda S., Kusano E., Murayama N., Asano Y., Hosoda S., Sokabe H., Kawashima H. Atrial natriuretic peptide elevates cGMP contents in glomeruli and in distal tubules of rat kidney. Biochem Biophys Res Commun. 1986 May 14;136(3):947–954. doi: 10.1016/0006-291x(86)90424-9. [DOI] [PubMed] [Google Scholar]
  31. Tremblay J., Gerzer R., Vinay P., Pang S. C., Béliveau R., Hamet P. The increase of cGMP by atrial natriuretic factor correlates with the distribution of particulate guanylate cyclase. FEBS Lett. 1985 Feb 11;181(1):17–22. doi: 10.1016/0014-5793(85)81105-4. [DOI] [PubMed] [Google Scholar]
  32. Tsai S. C., Adamik R., Hom B. E., Manganiello V. C., Moss J. Effects of nitroprusside on the bradykinin responsiveness of human fibroblasts. Mol Pharmacol. 1986 Sep;30(3):274–278. [PubMed] [Google Scholar]
  33. Waldman S. A., Rapoport R. M., Murad F. Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem. 1984 Dec 10;259(23):14332–14334. [PubMed] [Google Scholar]
  34. Weishaar R. E., Cain M. H., Bristol J. A. A new generation of phosphodiesterase inhibitors: multiple molecular forms of phosphodiesterase and the potential for drug selectivity. J Med Chem. 1985 May;28(5):537–545. doi: 10.1021/jm50001a001. [DOI] [PubMed] [Google Scholar]
  35. Winquist R. J., Faison E. P., Waldman S. A., Schwartz K., Murad F., Rapoport R. M. Atrial natriuretic factor elicits an endothelium-independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7661–7664. doi: 10.1073/pnas.81.23.7661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. de Bold A. J. Atrial natriuretic factor: an overview. Fed Proc. 1986 Jun;45(7):2081–2085. [PubMed] [Google Scholar]
  37. de Bold A. J., Borenstein H. B., Veress A. T., Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981 Jan 5;28(1):89–94. doi: 10.1016/0024-3205(81)90370-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES