Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Aug;82(2):427–435. doi: 10.1172/JCI113615

Synthesis of hydroxyeicosatetraenoic acids and leukotrienes in rat nephrotoxic serum glomerulonephritis. Role of anti-glomerular basement membrane antibody dose, complement, and neutrophiles.

E A Lianos 1
PMCID: PMC303531  PMID: 2841352

Abstract

The basal and stimulated synthesis of immunoassayable 12- and 5-monohydroxyeicosatetraenoic acids (HETE) and leukotrienes (LT) B4 and C4 was studied in glomeruli isolated from rats with nephrotoxic serum glomerulonephritis (NSGN) induced by low (30 micrograms/g body weight) or high (105 micrograms/g) doses of anti-rat glomerular basement membrane (GBM) immunoglobulin (Ig). In the early heterologous phase of the disease, low doses of anti-GBM Ig enhanced the basal synthesis of 12-HETE but not that of 5-HETE or LT. High anti-GBM Ig doses enhanced the basal synthesis of 5-HETE and LTB4 as well. Under stimulated conditions, enhanced glomerular production of 5-HETE and LTB4 occurred at 15 min after infusion of anti-GBM Ig, peaked at 1 h, and returned toward control levels by 24 h. At 48 h, 72 h, and on day 12, the synthesis of these eicosanoids was impaired. Neutrophile depletion only partially reduced glomerular eicosanoid synthesis after induction of NSGN whereas complement depletion significantly reduced 5-HETE, 12-HETE, and LTB4. These observations indicate that in the heterologous phase of NSGN there is enhanced but short-lived glomerular 5-HETE and LTB4 synthesis. This phenomenon is mediated by complement activation and may be an important proinflammatory event leading to capillary wall injury in the early stages of the disease.

Full text

PDF
427

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Bradley P. P., Priebat D. A., Christensen R. D., Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 1982 Mar;78(3):206–209. doi: 10.1111/1523-1747.ep12506462. [DOI] [PubMed] [Google Scholar]
  3. Cattell V., Cook H. T., Smith J., Salmon J. A., Moncada S. Leukotriene B4 production in normal rat glomeruli. Nephrol Dial Transplant. 1987;2(3):154–157. [PubMed] [Google Scholar]
  4. Clancy R. M., Dahinden C. A., Hugli T. E. Complement-mediated arachidonate metabolism. Prog Biochem Pharmacol. 1985;20:120–131. [PubMed] [Google Scholar]
  5. Clancy R. M., Hugli T. E. The extraction of leukotrienes (LTC4, LTD4, and LTE4) from tissue fluids: the metabolism of these mediators during IgE-dependent hypersensitivity reactions in lung. Anal Biochem. 1983 Aug;133(1):30–39. doi: 10.1016/0003-2697(83)90218-x. [DOI] [PubMed] [Google Scholar]
  6. Goetzl E. J. Mediators of immediate hypersensitivity derived from arachidonic acid. N Engl J Med. 1980 Oct 2;303(14):822–825. doi: 10.1056/NEJM198010023031421. [DOI] [PubMed] [Google Scholar]
  7. Goodwin J. S., Atluru D., Sierakowski S., Lianos E. A. Mechanism of action of glucocorticosteroids. Inhibition of T cell proliferation and interleukin 2 production by hydrocortisone is reversed by leukotriene B4. J Clin Invest. 1986 Apr;77(4):1244–1250. doi: 10.1172/JCI112427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jim K., Hassid A., Sun F., Dunn M. J. Lipoxygenase activity in rat kidney glomeruli, glomerular epithelial cells, and cortical tubules. J Biol Chem. 1982 Sep 10;257(17):10294–10299. [PubMed] [Google Scholar]
  9. Lewis R. A., Austen K. F. The biologically active leukotrienes. Biosynthesis, metabolism, receptors, functions, and pharmacology. J Clin Invest. 1984 Apr;73(4):889–897. doi: 10.1172/JCI111312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lianos E. A., Andres G. A., Dunn M. J. Glomerular prostaglandin and thromboxane synthesis in rat nephrotoxic serum nephritis. Effects on renal hemodynamics. J Clin Invest. 1983 Oct;72(4):1439–1448. doi: 10.1172/JCI111100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lianos E. A., Rahman M. A., Dunn M. J. Glomerular arachidonate lipoxygenation in rat nephrotoxic serum nephritis. J Clin Invest. 1985 Oct;76(4):1355–1359. doi: 10.1172/JCI112110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mancini G., Carbonara A. O., Heremans J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry. 1965 Sep;2(3):235–254. doi: 10.1016/0019-2791(65)90004-2. [DOI] [PubMed] [Google Scholar]
  13. Shigematsu H. Glomerular events during the initial phase of rat Masugi nephritis. Virchows Arch B Cell Pathol. 1970;5(3):187–200. [PubMed] [Google Scholar]
  14. Stenson W. F., Parker C. W. Monohydroxyeicosatetraenoic acids (HETEs) induce degranulation of human neutrophils. J Immunol. 1980 May;124(5):2100–2104. [PubMed] [Google Scholar]
  15. TARANTA A., BADALAMENTI G., COOPER N. S. ROLE OF COMPLEMENT IN NEPHROTOXIC NEPHRITIS. Nature. 1963 Oct 26;200:373–375. doi: 10.1038/200373b0. [DOI] [PubMed] [Google Scholar]
  16. Till G. O., Johnson K. J., Kunkel R., Ward P. A. Intravascular activation of complement and acute lung injury. Dependency on neutrophils and toxic oxygen metabolites. J Clin Invest. 1982 May;69(5):1126–1135. doi: 10.1172/JCI110548. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES