Abstract
Abnormal renovascular reactivity, characterized by paradoxical vasoconstriction to a reduction in renal perfusion pressure (RPP) in the autoregulatory range, increased sensitivity to renal nerve stimulation (RNS), and loss of vasodilatation to acetylcholine have all been demonstrated in ischemic acute renal failure (ARF). To determine if ischemic injury alters vascular contractility by increasing smooth muscle cell calcium or calcium influx, the renal blood flow (RBF) response to reductions in RPP within the autoregulatory range and to RNS were tested before and after a 90-min intrarenal infusion of verapamil or diltiazem in 7-d ischemic ARF rats. Both calcium entry blockers, verapamil and diltiazem, blocked the aberrant vasoconstrictor response to a reduction in RPP and RNS (both P less than 0.001). In a second series of experiments the potential role of an ischemia-induced endothelial injury and of the absence of endothelium-derived relaxing factor (EDRF) production were examined to explain the lack of vasodilatation to acetylcholine. Acetylcholine, bradykinin (a second EDRF-dependent vasodilator), or prostacyclin, an EDRF-independent vasodilator, was infused intrarenally for 90 min, and RBF responses to a reduction in RPP and RNS were tested in 7-d ischemic ARF rats. Neither acetylcholine nor bradykinin caused vasodilatation or altered the slope of the relationship between RBF and RPP. By contrast, prostacyclin increased RBF (P less than 0.001), but did not change the vascular response to changes in RPP. It was concluded that the abnormal pressor sensitivity to a reduction in RPP and RNS was due to changes in renovascular smooth muscle cell calcium activity that could be blocked by calcium entry blockers. A lack of response to EDRF-dependent vasodilators, as a result of ischemic endothelial injury, may contribute to the increased pressor sensitivity of the renal vessels.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams P. L., Adams F. F., Bell P. D., Navar L. G. Impaired renal blood flow autoregulation in ischemic acute renal failure. Kidney Int. 1980 Jul;18(1):68–76. doi: 10.1038/ki.1980.111. [DOI] [PubMed] [Google Scholar]
- Arendshorst W. J. Autoregulation of renal blood flow in spontaneously hypertensive rats. Circ Res. 1979 Mar;44(3):344–349. doi: 10.1161/01.res.44.3.344. [DOI] [PubMed] [Google Scholar]
- Arnold P. E., Van Putten V. J., Lumlertgul D., Burke T. J., Schrier R. W. Adenine nucleotide metabolism and mitochondrial Ca2+ transport following renal ischemia. Am J Physiol. 1986 Feb;250(2 Pt 2):F357–F363. doi: 10.1152/ajprenal.1986.250.2.F357. [DOI] [PubMed] [Google Scholar]
- Blackshear J. L., Davidman M., Stillman M. T. Identification of risk for renal insufficiency from nonsteroidal anti-inflammatory drugs. Arch Intern Med. 1983 Jun;143(6):1130–1134. [PubMed] [Google Scholar]
- Burke T. J., Arnold P. E., Gordon J. A., Bulger R. E., Dobyan D. C., Schrier R. W. Protective effect of intrarenal calcium membrane blockers before or after renal ischemia. Functional, morphological, and mitochondrial studies. J Clin Invest. 1984 Nov;74(5):1830–1841. doi: 10.1172/JCI111602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherry P. D., Furchgott R. F., Zawadzki J. V., Jothianandan D. Role of endothelial cells in relaxation of isolated arteries by bradykinin. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2106–2110. doi: 10.1073/pnas.79.6.2106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen A. J., Fray J. C. Calcium ion dependence of myogenic renal plasma flow autoregulation: evidence from the isolated perfused rat kidney. J Physiol. 1982 Sep;330:449–460. doi: 10.1113/jphysiol.1982.sp014351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conger J. D., Burke T. J. Effects of anesthetic agents on autoregulation of renal hemodynamics in the rat and dog. Am J Physiol. 1976 Mar;230(3):652–657. doi: 10.1152/ajplegacy.1976.230.3.652. [DOI] [PubMed] [Google Scholar]
- Conger J. D., Robinette J. B., Guggenheim S. J. Effect of acetylcholine on the early phase of reversible norepinephrine-induced acute renal failure. Kidney Int. 1981 Mar;19(3):399–409. doi: 10.1038/ki.1981.32. [DOI] [PubMed] [Google Scholar]
- Conger J. D., Robinette J. B., Kelleher S. P. Nephron heterogeneity in ischemic acute renal failure. Kidney Int. 1984 Oct;26(4):422–429. doi: 10.1038/ki.1984.191. [DOI] [PubMed] [Google Scholar]
- Conger J. D. Vascular abnormalities in the maintenance of acute renal failure. Circ Shock. 1983;11(3):235–244. [PubMed] [Google Scholar]
- Furchgott R. F. Role of endothelium in responses of vascular smooth muscle. Circ Res. 1983 Nov;53(5):557–573. doi: 10.1161/01.res.53.5.557. [DOI] [PubMed] [Google Scholar]
- Kelleher S. P., Robinette J. B., Conger J. D. Sympathetic nervous system in the loss of autoregulation in acute renal failure. Am J Physiol. 1984 Apr;246(4 Pt 2):F379–F386. doi: 10.1152/ajprenal.1984.246.4.F379. [DOI] [PubMed] [Google Scholar]
- Kelleher S. P., Robinette J. B., Miller F., Conger J. D. Effect of hemorrhagic reduction in blood pressure on recovery from acute renal failure. Kidney Int. 1987 Mar;31(3):725–730. doi: 10.1038/ki.1987.58. [DOI] [PubMed] [Google Scholar]
- Kimberly R. P., Bowden R. E., Keiser H. R., Plotz P. H. Reduction of renal function by newer nonsteroidal anti-inflammatory drugs. Am J Med. 1978 May;64(5):804–807. doi: 10.1016/0002-9343(78)90520-x. [DOI] [PubMed] [Google Scholar]
- Lamping K. G., Marcus M. L., Dole W. P. Removal of the endothelium potentiates canine large coronary artery constrictor responses to 5-hydroxytryptamine in vivo. Circ Res. 1985 Jul;57(1):46–54. doi: 10.1161/01.res.57.1.46. [DOI] [PubMed] [Google Scholar]
- Malis C. D., Cheung J. Y., Leaf A., Bonventre J. V. Effects of verapamil in models of ischemic acute renal failure in the rat. Am J Physiol. 1983 Dec;245(6):F735–F742. doi: 10.1152/ajprenal.1983.245.6.F735. [DOI] [PubMed] [Google Scholar]
- Muther R. S., Potter D. M., Bennett W. M. Aspirin-induced depression of glomerular filtration rate in normal humans: role of sodium balance. Ann Intern Med. 1981 Mar;94(3):317–321. doi: 10.7326/0003-4819-94-3-317. [DOI] [PubMed] [Google Scholar]
- Ono H., Kokubun H., Hashimoto K. Abolition by calcium antagonists of the autoregulation of renal blood flow. Naunyn Schmiedebergs Arch Pharmacol. 1974;285(3):201–207. doi: 10.1007/BF00498990. [DOI] [PubMed] [Google Scholar]
- Schipke J. D., Heusch G., Deussen A., Thämer V. Acetylcholine induces constriction of epicardial coronary arteries in anesthetized dogs after removal of endothelium. Arzneimittelforschung. 1985;35(6):926–929. [PubMed] [Google Scholar]
- Schrier R. W., Arnold P. E., Gordon J. A., Burke T. J. Protection of mitochondrial function by mannitol in ischemic acute renal failure. Am J Physiol. 1984 Aug;247(2 Pt 2):F365–F369. doi: 10.1152/ajprenal.1984.247.2.F365. [DOI] [PubMed] [Google Scholar]
- Shapiro J. I., Cheung C., Itabashi A., Chan L., Schrier R. W. The effect of verapamil on renal function after warm and cold ischemia in the isolated perfused rat kidney. Transplantation. 1985 Dec;40(6):596–600. doi: 10.1097/00007890-198512000-00004. [DOI] [PubMed] [Google Scholar]
- Solez K., Morel-Maroger L., Sraer J. D. The morphology of "acute tubular necrosis" in man: analysis of 57 renal biopsies and a comparison with the glycerol model. Medicine (Baltimore) 1979 Sep;58(5):362–376. [PubMed] [Google Scholar]
- Stein J. H., Lifschitz M. D., Barnes L. D. Current concepts on the pathophysiology of acute renal failure. Am J Physiol. 1978 Mar;234(3):F171–F181. doi: 10.1152/ajprenal.1978.234.3.F171. [DOI] [PubMed] [Google Scholar]
- Van Breemen C., Cauvin C., Johns A., Leijten P., Yamamoto H. Ca2+ regulation of vascular smooth muscle. Fed Proc. 1986 Nov;45(12):2746–2751. [PubMed] [Google Scholar]
- VanBenthuysen K. M., McMurtry I. F., Horwitz L. D. Reperfusion after acute coronary occlusion in dogs impairs endothelium-dependent relaxation to acetylcholine and augments contractile reactivity in vitro. J Clin Invest. 1987 Jan;79(1):265–274. doi: 10.1172/JCI112793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinberg J. M. Oxygen deprivation-induced injury to isolated rabbit kidney tubules. J Clin Invest. 1985 Sep;76(3):1193–1208. doi: 10.1172/JCI112075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams R. H., Thomas C. E., Navar L. G., Evan A. P. Hemodynamic and single nephron function during the maintenance phase of ischemic acute renal failure in the dog. Kidney Int. 1981 Apr;19(4):503–515. doi: 10.1038/ki.1981.48. [DOI] [PubMed] [Google Scholar]
- Zipser R. D., Hoefs J. C., Speckart P. F., Zia P. K., Horton R. Prostaglandins: modulators of renal function and pressor resistance in chronic liver disease. J Clin Endocrinol Metab. 1979 Jun;48(6):895–900. doi: 10.1210/jcem-48-6-895. [DOI] [PubMed] [Google Scholar]