Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Aug;82(2):721–730. doi: 10.1172/JCI113653

Site and mechanism of action of trichlormethiazide in rabbit distal nephron segments perfused in vitro.

T Shimizu 1, K Yoshitomi 1, M Nakamura 1, M Imai 1
PMCID: PMC303569  PMID: 2841360

Abstract

To determine the exact site and mechanism of action of thiazide diuretics, effects of 10(-4) M trichlormethiazide (TCM) on NaCl transport were examined in the distal convoluted tubule (DCT), the connecting tubule (CNT) and the cortical collecting duct (CCD) of rabbit kidney by the in vitro microperfusion technique. TCM added to the lumen decreased lumen-to-bath 36Cl flux (JCl(LB)) only in the CNT without changing the transmural voltage (VT). In the DCT, 10(-4) M furosemide did not change JCl(LB) even if it was added to the lumen with 10(-4) M TCM, whereas 10(-5) M amiloride in the lumen decreased the lumen-to-bath 22Na flux (JNa(LB)) and VT. In the CNT, TCM added to the lumen did not affect the bath-to-lumen 36Cl flux. Addition of TCM to the bath slightly decreased JCl(LB). Luminal addition of 10(-4) M TCM also decreased JNa(LB). Amiloride at 10(-5) M in the lumen decreased both JNa(LB) and VT. Addition of TCM with 10(-5) M amiloride further decreased JNa(LB) without affecting VT, indicating that TCM affects the electroneutral Na+ transport, which is distinct from the amiloride-sensitive conductive Na+ pathway. When Na+ was removed from the lumen, JCl(LB) was markedly decreased, but addition of TCM did not cause further decrease in JCl(LB). Furosemide did not affect JCl(LB), but addition of both 10(-4) M TCM and furosemide decreased JCl(LB), indicating that Na+-K+-2Cl- cotransport is not involved in the action of TCM. Removal of HCO3- slightly decreased JCl(LB), and TCM caused further decrease in JCl(LB). Amiloride at 10(-3) M, a concentration supposed to inhibit the Na+/H+ antiport, slightly decreased JCl(LB), and addition of TCM caused a further marked decrease in JJl(LB). The similar results were also obtained when the combined effects of 10(-3) M 4,4'-diisothiocyano-stilben-2,2'-disulfonate(DIDS) and 10(-4) M TCM were examined. These findings suggest that the parallel antiport of Na+/H+ and Cl-/HCO3- is not involved in the action of TCM. By excluding other possible mechanisms involving neutral Na+-dependent Cl- transport, we conclude that TCM inhibits Na+-Cl- cotransport in the luminal membrane of the rabbit CNT.

Full text

PDF
721

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almeida A. J., Burg M. B. Sodium transport in the rabbit connecting tubule. Am J Physiol. 1982 Oct;243(4):F330–F334. doi: 10.1152/ajprenal.1982.243.4.F330. [DOI] [PubMed] [Google Scholar]
  2. Baerentsen H., Giraldez F., Zeuthen T. Influx mechanisms for Na+ and Cl- across the brush border membrane of leaky epithelia: a model and microelectrode study. J Membr Biol. 1983;75(3):205–218. doi: 10.1007/BF01871951. [DOI] [PubMed] [Google Scholar]
  3. Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
  4. Clapp J. R., Robinson K. R. Distal sites of action of diuretic drugs in the dog nephron. Am J Physiol. 1968 Jul;215(1):228–235. doi: 10.1152/ajplegacy.1968.215.1.228. [DOI] [PubMed] [Google Scholar]
  5. Costanzo L. S. Localization of diuretic action in microperfused rat distal tubules: Ca and Na transport. Am J Physiol. 1985 Apr;248(4 Pt 2):F527–F535. doi: 10.1152/ajprenal.1985.248.4.F527. [DOI] [PubMed] [Google Scholar]
  6. Costanzo L. S., Windhager E. E. Calcium and sodium transport by the distal convoluted tubule of the rat. Am J Physiol. 1978 Nov;235(5):F492–F506. doi: 10.1152/ajprenal.1978.235.5.F492. [DOI] [PubMed] [Google Scholar]
  7. Cremaschi D., Meyer G., Rossetti C., Bottà G., Palestini P. The nature of the neutral Na+-Cl(-)-coupled entry at the apical membrane of rabbit gallbladder epithelium: I. Na+/H+, Cl-/HCO3- double exchange and Na+-Cl- symport. J Membr Biol. 1987;95(3):209–218. doi: 10.1007/BF01869483. [DOI] [PubMed] [Google Scholar]
  8. Dirks J. H., Cirksena W. J., Berliner R. W. Micropuncture study of the effect of various diuretics on sodium reabsorption by the proximal tubules of the dog. J Clin Invest. 1966 Dec;45(12):1875–1885. doi: 10.1172/JCI105492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duarte C. G., Chomety F., Giebisch G. Effect of amiloride, ouabain, and furosemide on distal tubular function in the rat. Am J Physiol. 1971 Aug;221(2):632–640. doi: 10.1152/ajplegacy.1971.221.2.632. [DOI] [PubMed] [Google Scholar]
  10. EARLEY L. E., KAHN M., ORLOFF J. The effects of infusions of chlorothiazide on urinary dilution and concentration in the dog. J Clin Invest. 1961 May;40:857–866. doi: 10.1172/JCI104320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edwards B. R., Baer P. G., Sutton R. A., Dirks J. H. Micropuncture study of diuretic effects on sodium and calcium reabsorption in the dog nephron. J Clin Invest. 1973 Oct;52(10):2418–2427. doi: 10.1172/JCI107432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Friedman P. A., Andreoli T. E. CO2-stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle. Evidence for synchronous Na +/H+ and Cl-/HCO3- exchange in apical plasma membranes. J Gen Physiol. 1982 Nov;80(5):683–711. doi: 10.1085/jgp.80.5.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garcia-Austt J., Good D. W., Burg M. B., Knepper M. A. Deoxycorticosterone-stimulated bicarbonate secretion in rabbit cortical collecting ducts: effects of luminal chloride removal and in vivo acid loading. Am J Physiol. 1985 Aug;249(2 Pt 2):F205–F212. doi: 10.1152/ajprenal.1985.249.2.F205. [DOI] [PubMed] [Google Scholar]
  14. Grantham J. J., Burg M. B. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am J Physiol. 1966 Jul;211(1):255–259. doi: 10.1152/ajplegacy.1966.211.1.255. [DOI] [PubMed] [Google Scholar]
  15. Gross J. B., Imai M., Kokko J. P. A functional comparison of the cortical collecting tubule and the distal convoluted tubule. J Clin Invest. 1975 Jun;55(6):1284–1294. doi: 10.1172/JCI108048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hansen L. L., Schilling A. R., Wiederholt M. Effect of calcium, furosemide and chlorothiazide on net volume reabsorption and basolateral membrane potential of the distal tubule. Pflugers Arch. 1981 Jan;389(2):121–126. doi: 10.1007/BF00582101. [DOI] [PubMed] [Google Scholar]
  17. Heintze K., Petersen K. U., Wood J. R. Effects of bicarbonate on fluid and electrolyte transport by guinea pig and rabbit gallbladder: stimulation of absorption. J Membr Biol. 1981;62(3):175–181. doi: 10.1007/BF01998163. [DOI] [PubMed] [Google Scholar]
  18. Imai M. Effects of parathyroid hormone and N6,O2'-dibutyryl cyclic AMP on Ca2+ transport across the rabbit distal nephron segments perfused in vitro. Pflugers Arch. 1981 May;390(2):145–151. doi: 10.1007/BF00590197. [DOI] [PubMed] [Google Scholar]
  19. Imai M., Kokko J. P. Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. J Clin Invest. 1974 Feb;53(2):393–402. doi: 10.1172/JCI107572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Imai M., Nakamura R. Function of distal convoluted and connecting tubules studied by isolated nephron fragments. Kidney Int. 1982 Nov;22(5):465–472. doi: 10.1038/ki.1982.199. [DOI] [PubMed] [Google Scholar]
  21. Imai M. The connecting tubule: a functional subdivision of the rabbit distal nephron segments. Kidney Int. 1979 Apr;15(4):346–356. doi: 10.1038/ki.1979.46. [DOI] [PubMed] [Google Scholar]
  22. Kaissling B., Kriz W. Structural analysis of the rabbit kidney. Adv Anat Embryol Cell Biol. 1979;56:1–123. doi: 10.1007/978-3-642-67147-0. [DOI] [PubMed] [Google Scholar]
  23. Kaissling B. Structural aspects of adaptive changes in renal electrolyte excretion. Am J Physiol. 1982 Sep;243(3):F211–F226. doi: 10.1152/ajprenal.1982.243.3.F211. [DOI] [PubMed] [Google Scholar]
  24. Kunau R. T., Jr, Weller D. R., Webb H. L. Clarification of the site of action of chlorothiazide in the rat nephron. J Clin Invest. 1975 Aug;56(2):401–407. doi: 10.1172/JCI108105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lombard W. E., Kokko J. P., Jacobson H. R. Bicarbonate transport in cortical and outer medullary collecting tubules. Am J Physiol. 1983 Mar;244(3):F289–F296. doi: 10.1152/ajprenal.1983.244.3.F289. [DOI] [PubMed] [Google Scholar]
  26. MAREN T. H. The relation between enzyme inhibition and physiological response in the carbonic anhydrase system. J Pharmacol Exp Ther. 1963 Feb;139:140–153. [PubMed] [Google Scholar]
  27. Marumo F., Mishina T., Shimada H. Effects of diazoxide and hydrochlorothiazide on water permeability and sodium transport in the frog bladder. Pharmacology. 1982;24(3):175–180. doi: 10.1159/000137593. [DOI] [PubMed] [Google Scholar]
  28. Meng K. Mikropunktionsuntersuchungen über die saluretische Wirkung von Hydrochlorothiazid, Acetazolamid und Furosemid. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1967;257(3):355–371. [PubMed] [Google Scholar]
  29. Murer H., Hopfer U., Kinne R. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem J. 1976 Mar 15;154(3):597–604. [PMC free article] [PubMed] [Google Scholar]
  30. Nagineni C. N., Leveille P. J., Lee D. B., Yanagawa N. Isolation of cells from rabbit renal proximal tubules by using a hyperosmolar intracellular-like solution. Biochem J. 1984 Oct 15;223(2):353–358. doi: 10.1042/bj2230353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pirie S. C., Potts D. J. A comparison of the relative effectiveness of three transplant preservation fluids upon the integrity and function of rabbit proximal convoluted tubules perfused in vitro. Clin Sci (Lond) 1986 May;70(5):443–452. doi: 10.1042/cs0700443. [DOI] [PubMed] [Google Scholar]
  32. Pirie S. C., Potts D. J. Application of cold flush preservation to in vitro microperfusion studies of kidney tubules. Kidney Int. 1985 Dec;28(6):982–984. doi: 10.1038/ki.1985.227. [DOI] [PubMed] [Google Scholar]
  33. SUKI W., RECTOR F. C., Jr, SELDIN D. W. THE SITE OF ACTION OF FUROSEMIDE AND OTHER SULFONAMIDE DIURETICS IN THE DOG. J Clin Invest. 1965 Sep;44:1458–1469. doi: 10.1172/JCI105252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schlatter E., Greger R., Weidtke C. Effect of "high ceiling" diuretics on active salt transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Correlation of chemical structure and inhibitory potency. Pflugers Arch. 1983 Mar 1;396(3):210–217. doi: 10.1007/BF00587857. [DOI] [PubMed] [Google Scholar]
  35. Schnieders J. R., Ludens J. H. Comparison of effects of standard diuretics and indanone in isolated toad cornea and bladder. Am J Physiol. 1980 Jan;238(1):R70–R75. doi: 10.1152/ajpregu.1980.238.1.R70. [DOI] [PubMed] [Google Scholar]
  36. Schuster V. L. Cyclic adenosine monophosphate-stimulated bicarbonate secretion in rabbit cortical collecting tubules. J Clin Invest. 1985 Jun;75(6):2056–2064. doi: 10.1172/JCI111925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Seldin D. W., Eknoyan G., Suki W. N., Rector F. C., Jr Localization of diuretic action from the pattern of water and electrolyte excretion. Ann N Y Acad Sci. 1966 Nov 22;139(2):328–343. doi: 10.1111/j.1749-6632.1966.tb41207.x. [DOI] [PubMed] [Google Scholar]
  38. Shareghi G. R., Stoner L. C. Calcium transport across segments of the rabbit distal nephron in vitro. Am J Physiol. 1978 Oct;235(4):F367–F375. doi: 10.1152/ajprenal.1978.235.4.F367. [DOI] [PubMed] [Google Scholar]
  39. Stanton B. A. Electroneutral NaCl transport by distal tubule: evidence for Na+/H+-Cl-/HCO3- exchange. Am J Physiol. 1988 Jan;254(1 Pt 2):F80–F86. doi: 10.1152/ajprenal.1988.254.1.F80. [DOI] [PubMed] [Google Scholar]
  40. Star R. A., Burg M. B., Knepper M. A. Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts. Role of chloride/bicarbonate exchange. J Clin Invest. 1985 Sep;76(3):1123–1130. doi: 10.1172/JCI112067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stokes J. B. Sodium chloride absorption by the urinary bladder of the winter flounder. A thiazide-sensitive, electrically neutral transport system. J Clin Invest. 1984 Jul;74(1):7–16. doi: 10.1172/JCI111420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tago K., Schuster V. L., Stokes J. B. Regulation of chloride self exchange by cAMP in cortical collecting tubule. Am J Physiol. 1986 Jul;251(1 Pt 2):F40–F48. doi: 10.1152/ajprenal.1986.251.1.F40. [DOI] [PubMed] [Google Scholar]
  43. Ullrich K. J., Baumann K., Loeschke K., Rumrich G., Stolte H. Micropuncture experiments with saluretic sulfonamides. Ann N Y Acad Sci. 1966 Nov 22;139(2):416–423. doi: 10.1111/j.1749-6632.1966.tb41215.x. [DOI] [PubMed] [Google Scholar]
  44. Velázquez H., Good D. W., Wright F. S. Mutual dependence of sodium and chloride absorption by renal distal tubule. Am J Physiol. 1984 Dec;247(6 Pt 2):F904–F911. doi: 10.1152/ajprenal.1984.247.6.F904. [DOI] [PubMed] [Google Scholar]
  45. Velázquez H., Wright F. S. Effects of diuretic drugs on Na, Cl, and K transport by rat renal distal tubule. Am J Physiol. 1986 Jun;250(6 Pt 2):F1013–F1023. doi: 10.1152/ajprenal.1986.250.6.F1013. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES