Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Sep;82(3):789–796. doi: 10.1172/JCI113680

Inhibition of tumor cell glutamine uptake by isolated neutrophils.

D B Learn 1, E L Thomas 1
PMCID: PMC303584  PMID: 2843571

Abstract

Antitumor activity of phorbol myristate acetate-(PMA) stimulated neutrophils was measured against CCRF-CEM cells. Neutrophils and tumor cells were incubated (a) as a suspension with continuous mixing to maximize the availability of oxygen or (b) after centrifugation as a pellet to maximize cell-cell contact. The cells were then incubated briefly as a suspension with [14C]glutamine under conditions that blocked further damage to the tumor cells. When cells were incubated as a suspension, inhibition of tumor-cell glutamine uptake was mediated by the myeloperoxidase/hydrogen peroxide/chloride system of stimulated neutrophils. Inhibition was blocked by adding catalase, an inhibitor of myeloperoxidase, or compounds that scavenge hypochlorous acid or chloramines. When cells were incubated as a pellet, a portion of the inhibition could not be blocked in this way, indicating that a nonoxidative mechanism contributed to inhibition. In both systems, inhibition of glutamine uptake was rapid and was obtained at effector-cell/target-cell ratios as low as 0.5:1. This inhibition was obtained under conditions that did not result in 51Cr release from cells labeled with [51Cr]-chromate, indicating that inhibition of glutamine uptake measured cytotoxicity rather than cytolysis. 51Cr release was observed only when cells were incubated together for an hour or more as a pellet at high E/T ratios. This cytolysis was mediated by the myeloperoxidase system, and a nonoxidative contribution to cytolysis was not observed. The results indicate that stimulated neutrophils are potent antitumor effectors cells when cytotoxicity rather than cytolysis is the measure of activity. Because glutamine is required for growth of many tumor cells, inhibition of glutamine uptake may represent a significant tumoristatic or tumoricidal effect.

Full text

PDF
789

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abou-Khalil W. H., Yunis A. A., Abou-Khalil S. Prominent glutamine oxidation activity in mitochondria of hematopoietic tumors. Cancer Res. 1983 May;43(5):1990–1993. [PubMed] [Google Scholar]
  2. Arad G., Kulka R. G. Effects of glutamine, methionine sulfone and dexamethasone on rates of synthesis of glutamine synthetase in cultured hepatoma cells. Biochim Biophys Acta. 1978 Nov 15;544(1):153–162. doi: 10.1016/0304-4165(78)90219-2. [DOI] [PubMed] [Google Scholar]
  3. Ardawi M. S., Newsholme E. A. The transport of glutamine into rat mesenteric lymphocytes. Biochim Biophys Acta. 1986 Apr 25;856(3):413–420. doi: 10.1016/0005-2736(86)90131-8. [DOI] [PubMed] [Google Scholar]
  4. Bakkenist A. R., Wever R., Vulsma T., Plat H., van Gelder B. F. Isolation procedure and some properties of myeloperoxidase from human leucocytes. Biochim Biophys Acta. 1978 May 11;524(1):45–54. doi: 10.1016/0005-2744(78)90101-8. [DOI] [PubMed] [Google Scholar]
  5. Christensen H. N., Handlogten M. E., Lam I., Tager H. S., Zand R. A bicyclic amino acid to improve discriminations among transport systems. J Biol Chem. 1969 Mar 25;244(6):1510–1520. [PubMed] [Google Scholar]
  6. Christensen H. N. Interorgan amino acid nutrition. Physiol Rev. 1982 Oct;62(4 Pt 1):1193–1233. doi: 10.1152/physrev.1982.62.4.1193. [DOI] [PubMed] [Google Scholar]
  7. Christensen H. N., Liang M., Archer E. G. A distinct Na+-requiring transport system for alanine, serine, cysteine, and similar amino acids. J Biol Chem. 1967 Nov 25;242(22):5237–5246. [PubMed] [Google Scholar]
  8. Christensen H. N. On the strategy of kinetic discrimination of amino acid transport systems. J Membr Biol. 1985;84(2):97–103. doi: 10.1007/BF01872207. [DOI] [PubMed] [Google Scholar]
  9. Clark R. A., Klebanoff S. J., Einstein A. B., Fefer A. Peroxidase-H2O2-halide system: Cytotoxic effect on mammalian tumor cells. Blood. 1975 Feb;45(2):161–170. [PubMed] [Google Scholar]
  10. Clark R. A., Klebanoff S. J. Neutrophil-mediated tumor cell cytotoxicity: role of the peroxidase system. J Exp Med. 1975 Jun 1;141(6):1442–1447. doi: 10.1084/jem.141.6.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clark R. A., Klebanoff S. J. Role of the myeloperoxidase-H2O2-halide system in concanavalin A-induced tumor cell killing by human neutrophils. J Immunol. 1979 Jun;122(6):2605–2610. [PubMed] [Google Scholar]
  12. Clark R. A., Klebanoff S. J. Studies on the mechanism of antibody-dependent polymorphonuclear leukocyte-mediated cytotoxicity. J Immunol. 1977 Oct;119(4):1413–1418. [PubMed] [Google Scholar]
  13. Clark R. A., Olsson I., Klebanoff S. J. Cytotoxicity for tumor cells of cationic proteins from human neutrophil granules. J Cell Biol. 1976 Sep;70(3):719–723. doi: 10.1083/jcb.70.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Clark R. A., Szot S. The myeloperoxidase-hydrogen peroxide-halide system as effector of neutrophil-mediated tumor cell cytotoxicity. J Immunol. 1981 Apr;126(4):1295–1301. [PubMed] [Google Scholar]
  15. Eavenson E., Christensen H. N. Transport systems for neutral amino acids in the pigeon erythrocyte. J Biol Chem. 1967 Nov 25;242(22):5386–5396. [PubMed] [Google Scholar]
  16. Edelson P. J., Cohn Z. A. Peroxidase-mediated mammalian cell cytotoxicity. J Exp Med. 1973 Jul 1;138(1):318–323. doi: 10.1084/jem.138.1.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. English D., Lukens J. N. Regulation of neutrophil inflammatory mediator release: chemotactic peptide activation of stimulus-dependent cytotoxicity. J Immunol. 1983 Feb;130(2):850–856. [PubMed] [Google Scholar]
  18. FOLEY G. E., LAZARUS H., FARBER S., UZMAN B. G., BOONE B. A., MCCARTHY R. E. CONTINUOUS CULTURE OF HUMAN LYMPHOBLASTS FROM PERIPHERAL BLOOD OF A CHILD WITH ACUTE LEUKEMIA. Cancer. 1965 Apr;18:522–529. doi: 10.1002/1097-0142(196504)18:4<522::aid-cncr2820180418>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  19. Grisham M. B., Jefferson M. M., Melton D. F., Thomas E. L. Chlorination of endogenous amines by isolated neutrophils. Ammonia-dependent bactericidal, cytotoxic, and cytolytic activities of the chloramines. J Biol Chem. 1984 Aug 25;259(16):10404–10413. [PubMed] [Google Scholar]
  20. Grisham M. B., Jefferson M. M., Thomas E. L. Role of monochloramine in the oxidation of erythrocyte hemoglobin by stimulated neutrophils. J Biol Chem. 1984 Jun 10;259(11):6757–6765. [PubMed] [Google Scholar]
  21. Hafeman D. G., Lucas Z. J. Polymorphonuclear leukocyte-mediated, antibody-dependent, cellular cytotoxicity against tumor cells: dependence on oxygen and the respiratory burst. J Immunol. 1979 Jul;123(1):55–62. [PubMed] [Google Scholar]
  22. Hornsby P. J. The role of vitamin E in cellular energy metabolism in cultured adrenocortical cells. J Cell Physiol. 1982 Aug;112(2):207–216. doi: 10.1002/jcp.1041120208. [DOI] [PubMed] [Google Scholar]
  23. Kilberg M. S., Handlogten M. E., Christensen H. N. Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs. J Biol Chem. 1980 May 10;255(9):4011–4019. [PubMed] [Google Scholar]
  24. Klassen D. K., Conkling P. R., Sagone A. L., Jr Activation of monocyte and granulocyte antibody-dependent cytotoxicity by phorbol myristate acetate. Infect Immun. 1982 Mar;35(3):818–825. doi: 10.1128/iai.35.3.818-825.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lazarus P., Panasci L. C. Characterization of L-threonine and L-glutamine transport in murine P388 leukemia cells in vitro. Presence of an N-like amino acid transport system. Biochim Biophys Acta. 1986 Apr 25;856(3):488–495. doi: 10.1016/0005-2736(86)90140-9. [DOI] [PubMed] [Google Scholar]
  26. Lichtenstein A., Ganz T., Selsted M. E., Lehrer R. I. In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes. Blood. 1986 Dec;68(6):1407–1410. [PubMed] [Google Scholar]
  27. Lund P. Glutamine metabolism in the rat. FEBS Lett. 1980 Aug 25;117 (Suppl):K86–K92. doi: 10.1016/0014-5793(80)80573-4. [DOI] [PubMed] [Google Scholar]
  28. Matheson N. R., Wong P. S., Travis J. Isolation and properties of human neutrophil myeloperoxidase. Biochemistry. 1981 Jan 20;20(2):325–330. doi: 10.1021/bi00505a015. [DOI] [PubMed] [Google Scholar]
  29. Moreadith R. W., Lehninger A. L. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. J Biol Chem. 1984 May 25;259(10):6215–6221. [PubMed] [Google Scholar]
  30. Newsholme E. A., Crabtree B., Ardawi M. S. Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Q J Exp Physiol. 1985 Oct;70(4):473–489. doi: 10.1113/expphysiol.1985.sp002935. [DOI] [PubMed] [Google Scholar]
  31. Novogrodsky A., Nehring R. E., Jr, Meister A. Inhibition of amino acid transport into lymphoid cells by the glutamine analog L-2-amino-4-oxo-5-chloropentanoate. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4932–4935. doi: 10.1073/pnas.76.10.4932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reitzer L. J., Wice B. M., Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem. 1979 Apr 25;254(8):2669–2676. [PubMed] [Google Scholar]
  33. Roberts J., Holcenberg J. S., Dolowy W. C. Antineoplastic activity of highly purified bacterial glutaminases. Nature. 1970 Sep 12;227(5263):1136–1137. doi: 10.1038/2271136a0. [DOI] [PubMed] [Google Scholar]
  34. Rosenfeld H., Roberts J. Enhancement of antitumor activity of glutamine antagonists 6-diazo-5-oxo-L-norleucine and acivicin in cell culture by glutaminase-asparaginase. Cancer Res. 1981 Apr;41(4):1324–1328. [PubMed] [Google Scholar]
  35. Rowe W. B., Meister A. Studies on the inhibition of glutamine synthetase by methionine sulfone. Biochemistry. 1973 Apr 10;12(8):1578–1582. doi: 10.1021/bi00732a018. [DOI] [PubMed] [Google Scholar]
  36. Slivka A., LoBuglio A. F., Weiss S. J. A potential role for hypochlorous acid in granulocyte-mediated tumor cell cytotoxicity. Blood. 1980 Feb;55(2):347–350. [PubMed] [Google Scholar]
  37. Spiers A. S., Wade H. E. Achromobacter L-glutaminase-L-asparaginase: human pharmacology, toxicology, and activity in acute leukemias. Cancer Treat Rep. 1979 Jun;63(6):1019–1024. [PubMed] [Google Scholar]
  38. Stendahl O., Molin L., Dahlgren C. The inhibition of polymorphonuclear leukocyte cytotoxicity by dapsone. A possible mechanism in the treatment of dermatitis herpetiformis. J Clin Invest. 1978 Jul;62(1):214–220. doi: 10.1172/JCI109109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tannock I. F., Steele D., Roberts J. Influence of reduced concentration of L-glutamine on growth and viability of cells in monolayer, in spheroids, and in experimental tumours. Br J Cancer. 1986 Nov;54(5):733–741. doi: 10.1038/bjc.1986.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Thomas E. L., Fishman M. Hydrogen peroxide release by rat peritoneal macrophages in the presence and absence of tumor cells. Arch Biochem Biophys. 1982 May;215(2):355–366. doi: 10.1016/0003-9861(82)90096-0. [DOI] [PubMed] [Google Scholar]
  41. Thomas E. L., Fishman M. Oxidation of chloride and thiocyanate by isolated leukocytes. J Biol Chem. 1986 Jul 25;261(21):9694–9702. [PubMed] [Google Scholar]
  42. Thomas E. L., Grisham M. B., Jefferson M. M. Cytotoxicity of chloramines. Methods Enzymol. 1986;132:585–593. doi: 10.1016/s0076-6879(86)32043-3. [DOI] [PubMed] [Google Scholar]
  43. Thomas E. L., Grisham M. B., Jefferson M. M. Myeloperoxidase-dependent effect of amines on functions of isolated neutrophils. J Clin Invest. 1983 Aug;72(2):441–454. doi: 10.1172/JCI110992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Thomas E. L., Grisham M. B., Jefferson M. M. Preparation and characterization of chloramines. Methods Enzymol. 1986;132:569–585. doi: 10.1016/s0076-6879(86)32042-1. [DOI] [PubMed] [Google Scholar]
  45. Thomas E. L., Grisham M. B., Melton D. F., Jefferson M. M. Evidence for a role of taurine in the in vitro oxidative toxicity of neutrophils toward erythrocytes. J Biol Chem. 1985 Mar 25;260(6):3321–3329. [PubMed] [Google Scholar]
  46. Thomas E. L., Jefferson M. M., Bennett J. J., Learn D. B. Mutagenic activity of chloramines. Mutat Res. 1987 May;188(1):35–43. doi: 10.1016/0165-1218(87)90112-1. [DOI] [PubMed] [Google Scholar]
  47. Thomas E. L., Learn D. B., Jefferson M. M., Weatherred W. Superoxide-dependent oxidation of extracellular reducing agents by isolated neutrophils. J Biol Chem. 1988 Feb 15;263(5):2178–2186. [PubMed] [Google Scholar]
  48. Thomas E. L. Myeloperoxidase-hydrogen peroxide-chloride antimicrobial system: effect of exogenous amines on antibacterial action against Escherichia coli. Infect Immun. 1979 Jul;25(1):110–116. doi: 10.1128/iai.25.1.110-116.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Vadgama J. V., Christensen H. N. Comparison of system N in fetal hepatocytes and in related cell lines. J Biol Chem. 1983 May 25;258(10):6422–6429. [PubMed] [Google Scholar]
  50. Weiss S. J., Slivka A. Monocyte and granulocyte-mediated tumor cell destruction. A role for the hydrogen peroxide-myeloperoxidase-chloride system. J Clin Invest. 1982 Feb;69(2):255–262. doi: 10.1172/JCI110447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zielke H. R., Zielke C. L., Ozand P. T. Glutamine: a major energy source for cultured mammalian cells. Fed Proc. 1984 Jan;43(1):121–125. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES