Abstract
Growth factor receptors for T lymphocytes, such as interleukin 2 and insulin, are present on activated but not resting T lymphocytes. We sought to determine if insulin-like growth factor I (IGF-I) could act as a growth factor for human T cells and to characterize its receptor on resting and activated cells. Recombinant IGF-I induced two separate functions. It was chemotactic for and increased incorporation of tritiated thymidine into both unactivated (resting) and mitogen-activated T cells. High-affinity 125I-IGF-I binding to human T cells was saturable with an apparent Kd of 1.2 +/- .6 X 10(-10) M for binding to activated T cells and 1.2 +/- .9 X 10(-10) for unactivated T cells. The calculated binding for activated cells was 330 +/- 90 and for resting cells 45 +/- 9 high-affinity receptor sites per cell. Affinity cross-linking of 125I-IGF-I to resting or activated T cells revealed a radioligand-receptor complex of 360,000 mol wt when analyzed by SDS-PAGE without reduction and complexes of 270,000 and 135,000 mol wt upon reduction; prior incubation with excess unlabeled IGF-I prevented formation of the 125I-IGF-I receptor complex. Our data suggest that both resting and activated T lymphocytes bear functional IGF-I receptors similar to those found in other tissues. These receptors may mediate T cell growth and chemotaxis.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOYDEN S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med. 1962 Mar 1;115:453–466. doi: 10.1084/jem.115.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baxter R. C., Williams P. F. Reciprocal modulation of insulin and insulin-like growth factor-I receptor affinity by calcium. Biochem Biophys Res Commun. 1983 Oct 14;116(1):62–67. doi: 10.1016/0006-291x(83)90380-7. [DOI] [PubMed] [Google Scholar]
- Beguinot F., Kahn C. R., Moses A. C., Smith R. J. Distinct biologically active receptors for insulin, insulin-like growth factor I, and insulin-like growth factor II in cultured skeletal muscle cells. J Biol Chem. 1985 Dec 15;260(29):15892–15898. [PubMed] [Google Scholar]
- Berman J. S., Center D. M. Chemotactic activity of porcine insulin for human T lymphocytes in vitro. J Immunol. 1987 Apr 1;138(7):2100–2103. [PubMed] [Google Scholar]
- Burgess S. K., Jacobs S., Cuatrecasas P., Sahyoun N. Characterization of a neuronal subtype of insulin-like growth factor I receptor. J Biol Chem. 1987 Feb 5;262(4):1618–1622. [PubMed] [Google Scholar]
- Chernausek S. D., Jacobs S., Van Wyk J. J. Structural similarities between human receptors for somatomedin C and insulin: analysis by affinity labeling. Biochemistry. 1981 Dec 22;20(26):7345–7350. doi: 10.1021/bi00529a004. [DOI] [PubMed] [Google Scholar]
- Clemmons D. R., Shaw D. S. Purification and biologic properties of fibroblast somatomedin. J Biol Chem. 1986 Aug 5;261(22):10293–10298. [PubMed] [Google Scholar]
- Clemmons D. R., Shaw D. S. Variables controlling somatomedin production by cultured human fibroblasts. J Cell Physiol. 1983 May;115(2):137–142. doi: 10.1002/jcp.1041150206. [DOI] [PubMed] [Google Scholar]
- Clemmons D. R., Underwood L. E., Van Wyk J. J. Hormonal control of immunoreactive somatomedin production by cultured human fibroblasts. J Clin Invest. 1981 Jan;67(1):10–19. doi: 10.1172/JCI110001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clemmons D. R., Van Wyk J. J. Evidence for a functional role of endogenously produced somatomedinlike peptides in the regulation of DNA synthesis in cultured human fibroblasts and porcine smooth muscle cells. J Clin Invest. 1985 Jun;75(6):1914–1918. doi: 10.1172/JCI111906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies G. E., Stark G. R. Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins. Proc Natl Acad Sci U S A. 1970 Jul;66(3):651–656. doi: 10.1073/pnas.66.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Meyts P., Roth J. Cooperativity in ligand binding: a new graphic analysis. Biochem Biophys Res Commun. 1975 Oct 27;66(4):1118–1126. doi: 10.1016/0006-291x(75)90473-8. [DOI] [PubMed] [Google Scholar]
- Deuel T. F., Senior R. M., Huang J. S., Griffin G. L. Chemotaxis of monocytes and neutrophils to platelet-derived growth factor. J Clin Invest. 1982 Apr;69(4):1046–1049. doi: 10.1172/JCI110509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Froesch E. R., Schmid C., Schwander J., Zapf J. Actions of insulin-like growth factors. Annu Rev Physiol. 1985;47:443–467. doi: 10.1146/annurev.ph.47.030185.002303. [DOI] [PubMed] [Google Scholar]
- Gootenberg J. E., Ruscetti F. W., Mier J. W., Gazdar A., Gallo R. C. Human cutaneous T cell lymphoma and leukemia cell lines produce and respond to T cell growth factor. J Exp Med. 1981 Nov 1;154(5):1403–1418. doi: 10.1084/jem.154.5.1403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guler H. P., Zapf J., Froesch E. R. Short-term metabolic effects of recombinant human insulin-like growth factor I in healthy adults. N Engl J Med. 1987 Jul 16;317(3):137–140. doi: 10.1056/NEJM198707163170303. [DOI] [PubMed] [Google Scholar]
- Han V. K., D'Ercole A. J., Lund P. K. Cellular localization of somatomedin (insulin-like growth factor) messenger RNA in the human fetus. Science. 1987 Apr 10;236(4798):193–197. doi: 10.1126/science.3563497. [DOI] [PubMed] [Google Scholar]
- Helderman J. H., Reynolds T. C., Strom T. B. The insulin receptor as a universal marker of activated lymphocytes. Eur J Immunol. 1978 Aug;8(8):589–595. doi: 10.1002/eji.1830080810. [DOI] [PubMed] [Google Scholar]
- Helderman J. H., Strom T. B. Emergence of insulin receptors upon alloimmune T cells in the rat. J Clin Invest. 1977 Feb;59(2):338–344. doi: 10.1172/JCI108646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helderman J. H., Strom T. B. Specific insulin binding site on T and B lymphocytes as a marker of cell activation. Nature. 1978 Jul 6;274(5666):62–63. doi: 10.1038/274062a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herzberg V. L., Smith K. A. T cell growth without serum. J Immunol. 1987 Aug 15;139(4):998–1004. [PubMed] [Google Scholar]
- Hunninghake G. W., Glazier A. J., Monick M. M., Dinarello C. A. Interleukin-1 is a chemotactic factor for human T-lymphocytes. Am Rev Respir Dis. 1987 Jan;135(1):66–71. doi: 10.1164/arrd.1987.135.1.66. [DOI] [PubMed] [Google Scholar]
- Hunt P., Eardley D. D. Suppressive effects of insulin and insulin-like growth factor-1 (IGF1) on immune responses. J Immunol. 1986 Jun 1;136(11):3994–3999. [PubMed] [Google Scholar]
- Isley W. L., Underwood L. E., Clemmons D. R. Dietary components that regulate serum somatomedin-C concentrations in humans. J Clin Invest. 1983 Feb;71(2):175–182. doi: 10.1172/JCI110757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Izumi T., Kasuga M., Kadowaki T., Hizuka N., Takaku F., Akanuma Y. Characteristics of human erythrocyte insulin-like growth factor I receptors. J Clin Endocrinol Metab. 1986 Jun;62(6):1206–1212. doi: 10.1210/jcem-62-6-1206. [DOI] [PubMed] [Google Scholar]
- Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
- Kadowaki T., Koyasu S., Nishida E., Sakai H., Takaku F., Yahara I., Kasuga M. Insulin-like growth factors, insulin, and epidermal growth factor cause rapid cytoskeletal reorganization in KB cells. Clarification of the roles of type I insulin-like growth factor receptors and insulin receptors. J Biol Chem. 1986 Dec 5;261(34):16141–16147. [PubMed] [Google Scholar]
- Kasuga M., Van Obberghen E., Nissley S. P., Rechler M. M. Demonstration of two subtypes of insulin-like growth factor receptors by affinity cross-linking. J Biol Chem. 1981 Jun 10;256(11):5305–5308. [PubMed] [Google Scholar]
- Kasuga M., Van Obberghen E., Nissley S. P., Rechler M. M. Structure of the insulin-like growth factor receptor in chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1864–1868. doi: 10.1073/pnas.79.6.1864. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King G. L., Kahn C. R., Rechler M. M., Nissley S. P. Direct demonstration of separate receptors for growth and metabolic activities of insulin and multiplication-stimulating activity (an insulinlike growth factor) using antibodies to the insulin receptor. J Clin Invest. 1980 Jul;66(1):130–140. doi: 10.1172/JCI109826. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kornfeld H., Berman J. S., Beer D. J., Center D. M. Induction of human T lymphocyte motility by interleukin 2. J Immunol. 1985 Jun;134(6):3887–3890. [PubMed] [Google Scholar]
- Krug U., Krug F., Cuatrecasas P. Emergence of insulin receptors on human lymphocytes during in vitro transformation. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2604–2608. doi: 10.1073/pnas.69.9.2604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laron Z. Laron-type dwarfism (hereditary somatomedin deficiency): a review. Ergeb Inn Med Kinderheilkd. 1984;51:117–150. doi: 10.1007/978-3-642-69070-9_3. [DOI] [PubMed] [Google Scholar]
- Lin T., Haskell J., Vinson N., Terracio L. Characterization of insulin and insulin-like growth factor I receptors of purified Leydig cells and their role in steroidogenesis in primary culture: a comparative study. Endocrinology. 1986 Oct;119(4):1641–1647. doi: 10.1210/endo-119-4-1641. [DOI] [PubMed] [Google Scholar]
- Marshall R. N., Underwood L. E., Voina S. J., Foushee D. B., Van Wyk J. J. Characterization of the insulin and somatomedin-C receptors in human placental cell membranes. J Clin Endocrinol Metab. 1974 Aug;39(2):283–292. doi: 10.1210/jcem-39-2-283. [DOI] [PubMed] [Google Scholar]
- Massagué J., Czech M. P. The subunit structures of two distinct receptors for insulin-like growth factors I and II and their relationship to the insulin receptor. J Biol Chem. 1982 May 10;257(9):5038–5045. [PubMed] [Google Scholar]
- Merimee T. J., Zapf J., Hewlett B., Cavalli-Sforza L. L. Insulin-like growth factors in pygmies. The role of puberty in determining final stature. N Engl J Med. 1987 Apr 9;316(15):906–911. doi: 10.1056/NEJM198704093161503. [DOI] [PubMed] [Google Scholar]
- Miossec P., Yu C. L., Ziff M. Lymphocyte chemotactic activity of human interleukin 1. J Immunol. 1984 Oct;133(4):2007–2011. [PubMed] [Google Scholar]
- Morgan D. O., Jarnagin K., Roth R. A. Purification and characterization of the receptor for insulin-like growth factor I. Biochemistry. 1986 Sep 23;25(19):5560–5564. doi: 10.1021/bi00367a032. [DOI] [PubMed] [Google Scholar]
- Peters K., Richards F. M. Chemical cross-linking: reagents and problems in studies of membrane structure. Annu Rev Biochem. 1977;46:523–551. doi: 10.1146/annurev.bi.46.070177.002515. [DOI] [PubMed] [Google Scholar]
- Pilch P. F., Czech M. P. Interaction of cross-linking agents with the insulin effector system of isolated fat cells. Covalent linkage of 125I-insulin to a plasma membrane receptor protein of 140,000 daltons. J Biol Chem. 1979 May 10;254(9):3375–3381. [PubMed] [Google Scholar]
- Pilch P. F., Czech M. P. The subunit structure of the high affinity insulin receptor. Evidence for a disulfide-linked receptor complex in fat cell and liver plasma membranes. J Biol Chem. 1980 Feb 25;255(4):1722–1731. [PubMed] [Google Scholar]
- Pilch P. F., O'Hare T., Rubin J., Boni-Schnetzler M. The ligand binding subunit of the insulin-like growth factor 1 receptor has properties of a peripheral membrane protein. Biochem Biophys Res Commun. 1986 Apr 14;136(1):45–50. doi: 10.1016/0006-291x(86)90874-0. [DOI] [PubMed] [Google Scholar]
- Rechler M. M., Eisen H. J., Higa O. Z., Nissley P., Moses A. C., Schilling E. E., Fennoy I., Bruni C. B., Phillips L. S., Baird K. L. Characterization of a somatomedin (insulin-like growth factor) synthesized by fetal rat liver organ cultures. J Biol Chem. 1979 Aug 25;254(16):7942–7950. [PubMed] [Google Scholar]
- Rechler M. M., Nissley S. P., Podskalny J. M., Moses A. C., Fryklund L. Identification of a receptor for somatomedin-like polypeptides in human fibroblasts. J Clin Endocrinol Metab. 1977 May;44(5):820–831. doi: 10.1210/jcem-44-5-820. [DOI] [PubMed] [Google Scholar]
- Rosenfeld R. G., Dollar L. A. Characterization of the somatomedin-C/insulin-like growth factor I (SM-C/IGF-I) receptor on cultured human fibroblast monolayers: regulation of receptor concentrations by SM-C/IGF-I and insulin. J Clin Endocrinol Metab. 1982 Sep;55(3):434–440. doi: 10.1210/jcem-55-3-434. [DOI] [PubMed] [Google Scholar]
- Rosenfeld R. G., Dollar L. A., Conover C. A. Density-associated loss of functional receptors for somatomedin-C/insulinlike growth factor I (SM-C/IGF-I) on cultured human fibroblast monolayers. J Cell Physiol. 1984 Nov;121(2):419–424. doi: 10.1002/jcp.1041210221. [DOI] [PubMed] [Google Scholar]
- Rosenfeld R. G., Hintz R. L. Characterization of a specific receptor for somatomedin C (SM-C) on cultured human lymphocytes: evidence that SM-C modulates homologous receptor concentration. Endocrinology. 1980 Dec;107(6):1841–1848. doi: 10.1210/endo-107-6-1841. [DOI] [PubMed] [Google Scholar]
- Russell R. J., Wilkinson P. C., Sless F., Parrott D. M. Chemotaxis of lymphoblasts. Nature. 1975 Aug 21;256(5519):646–648. doi: 10.1038/256646a0. [DOI] [PubMed] [Google Scholar]
- Sara V. R., Hall K., Misaki M., Fryklund L., Christensen N., Wetterberg L. Ontogenesis of somatomedin and insulin receptors in the human fetus. J Clin Invest. 1983 May;71(5):1084–1094. doi: 10.1172/JCI110858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schimpff R. M., Repellin A. M., Salvatoni A., Thieriot-Prevost G., Chatelain P. Effect of purified somatomedins on thymidine incorporation into lectin-activated human lymphocytes. Acta Endocrinol (Copenh) 1983 Jan;102(1):21–26. doi: 10.1530/acta.0.1020021. [DOI] [PubMed] [Google Scholar]
- Snyderman R., Goetzl E. J. Molecular and cellular mechanisms of leukocyte chemotaxis. Science. 1981 Aug 21;213(4510):830–837. doi: 10.1126/science.6266014. [DOI] [PubMed] [Google Scholar]
- Snyderman R., Smith C. D., Verghese M. W. Model for leukocyte regulation by chemoattractant receptors: roles of a guanine nucleotide regulatory protein and polyphosphoinositide metabolism. J Leukoc Biol. 1986 Dec;40(6):785–800. doi: 10.1002/jlb.40.6.785. [DOI] [PubMed] [Google Scholar]
- Taylor S. I. Binding of hormones to receptors. An alternative explanation of nonlinear Scatchard plots. Biochemistry. 1975 Jun 3;14(11):2357–2361. doi: 10.1021/bi00682a013. [DOI] [PubMed] [Google Scholar]
- Thorsson A. V., Hintz R. L. Specific 125I-somatomedin receptor on circulating human mononuclear cells. Biochem Biophys Res Commun. 1977 Feb 21;74(4):1566–1573. doi: 10.1016/0006-291x(77)90621-0. [DOI] [PubMed] [Google Scholar]
- Underwood L. E., Clemmons D. R., Maes M., D'Ercole A. J., Ketelslegers J. M. Regulation of somatomedin-C/insulin-like growth factor I by nutrients. Horm Res. 1986;24(2-3):166–176. doi: 10.1159/000180556. [DOI] [PubMed] [Google Scholar]
- Underwood L. E., D'Ercole A. J. Insulin and insulin-like growth factors/somatomedins in fetal and neonatal development. Clin Endocrinol Metab. 1984 Mar;13(1):69–89. doi: 10.1016/s0300-595x(84)80009-2. [DOI] [PubMed] [Google Scholar]
- Williams L. T., Antoniades H. N., Goetzl E. J. Platelet-derived growth factor stimulates mouse 3T3 cell mitogenesis and leukocyte chemotaxis through different structural determinants. J Clin Invest. 1983 Nov;72(5):1759–1763. doi: 10.1172/JCI111135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zapf J., Rinderknecht E., Humbel R. E., Froesch E. R. Nonsuppressible insulin-like activity (NSILA) from human serum: recent accomplishments and their physiologic implications. Metabolism. 1978 Dec;27(12):1803–1828. doi: 10.1016/0026-0495(78)90267-6. [DOI] [PubMed] [Google Scholar]
- Zapf J., Schmid C., Froesch E. R. Biological and immunological properties of insulin-like growth factors (IGF) I and II. Clin Endocrinol Metab. 1984 Mar;13(1):3–30. doi: 10.1016/s0300-595x(84)80006-7. [DOI] [PubMed] [Google Scholar]
- Zigmond S. H., Hirsch J. G. Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor. J Exp Med. 1973 Feb 1;137(2):387–410. doi: 10.1084/jem.137.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]