Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Sep;82(3):980–986. doi: 10.1172/JCI113707

Oxypurine cycle in human erythrocytes regulated by pH, inorganic phosphate, and oxygen.

P A Berman 1, D A Black 1, L Human 1, E H Harley 1
PMCID: PMC303611  PMID: 2458389

Abstract

The effect of pH, PO2, and inorganic phosphate on the uptake and metabolism of hypoxanthine by erythrocytes has been studied. Uptake of hypoxanthine and accumulation of inosine 5'-monophosphate (IMP) were markedly increased at acid pH, high external phosphate concentrations, and low PO2. Release of accumulated IMP as hypoxanthine occurred at alkaline pH values and low external phosphate concentrations. Conditions favoring IMP accumulation gave rise, in the absence of hypoxanthine, to a corresponding increase in 5'-phosphoribosyl-1-pyrophosphate. Intracellular phosphate concentrations were markedly pH dependent and a model is presented whereby hypoxanthine uptake and release are controlled by intracellular concentrations of inorganic phosphate and 2,3-bisphosphoglycerate. These allosteric effectors influence, in opposing ways, two enzymes governing IMP accumulation, namely 5'-phosphoribosyl-1-pyrophosphate synthetase and 5'-nucleotidase. These metabolic properties suggest that the erythrocyte could play a role in the removal of hypoxanthine from anoxic tissue.

Full text

PDF
980

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benesch R. E., Benesch R. The mechanism of interaction of red cell organic phosphates with hemoglobin. Adv Protein Chem. 1974;28:211–237. doi: 10.1016/s0065-3233(08)60231-4. [DOI] [PubMed] [Google Scholar]
  2. Bontemps F., Van den Berghe G., Hers H. G. Identification of a purine 5'-nucleotidase in human erythrocytes. Adv Exp Med Biol. 1986;195(Pt B):283–290. doi: 10.1007/978-1-4684-1248-2_45. [DOI] [PubMed] [Google Scholar]
  3. Bontemps F., Van den Berghe G., Hers H. G. Pathways of adenine nucleotide catabolism in human erythrocytes. Adv Exp Med Biol. 1986;195(Pt B):329–336. doi: 10.1007/978-1-4684-1248-2_53. [DOI] [PubMed] [Google Scholar]
  4. Bunn H. F., Ransil B. J., Chao A. The interaction between erythrocyte organic phosphates, magnesium ion, and hemoglobin. J Biol Chem. 1971 Sep 10;246(17):5273–5279. [PubMed] [Google Scholar]
  5. Chiba H., Sasaki R. Functions, of 2,3-bisphosphoglycerate and its metabolism. Curr Top Cell Regul. 1978;14:75–116. doi: 10.1016/b978-0-12-152814-0.50007-1. [DOI] [PubMed] [Google Scholar]
  6. Fox I. H., Kelley W. N. Human phosphoribosylpyrophosphate synthetase. Distribution, purification, and properties. J Biol Chem. 1971 Sep 25;246(18):5739–5748. [PubMed] [Google Scholar]
  7. Fox I. H., Kelley W. N. Human phosphoribosylpyrophosphate synthetase. Kinetic mechanism and end product inhibition. J Biol Chem. 1972 Apr 10;247(7):2126–2131. [PubMed] [Google Scholar]
  8. Giacomello A., Salerno C. Hypoxanthine uptake by human erythrocytes. FEBS Lett. 1979 Nov 1;107(1):203–204. doi: 10.1016/0014-5793(79)80495-0. [DOI] [PubMed] [Google Scholar]
  9. HENNESSEY M. A., WALTERSDORPH A. M., HUENNEKENS F. M., GABRIO B. W. Erythrocyte metabolism. VI. Separation of erythrocyte enzymes from hemoglobin. J Clin Invest. 1962 Jun;41:1257–1262. doi: 10.1172/JCI104588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harkness R. A., Simmonds R. J., Coade S. B. Effect of hypoxia and exercise on nucleotide metabolism in man. Adv Exp Med Biol. 1984;165(Pt B):437–442. doi: 10.1007/978-1-4757-0390-0_83. [DOI] [PubMed] [Google Scholar]
  11. Hershko A., Razin A., Mager J. Regulation of the synthesis of 5-phosphoribosyl-I-pyrophosphate in intact red blood cells and in cell-free preparations. Biochim Biophys Acta. 1969 Jun 17;184(1):64–76. doi: 10.1016/0304-4165(69)90099-3. [DOI] [PubMed] [Google Scholar]
  12. Hershko A., Razin A., Shoshani T., Mager J. Turnover of purine nucleotides in rabbit erythrocytes. II. Studies in vitro. Biochim Biophys Acta. 1967 Nov 21;149(1):59–73. doi: 10.1016/0005-2787(67)90691-0. [DOI] [PubMed] [Google Scholar]
  13. LOWY B. A., WILLIAMS M. K., LONDON I. M. Enzymatic deficiencies of purine nucleotide synthesis in the human erythrocyte. J Biol Chem. 1962 May;237:1622–1625. [PubMed] [Google Scholar]
  14. Lassen U. V. Hypoxanthine transport in human erythrocytes. Biochim Biophys Acta. 1967 Feb 1;135(1):146–154. doi: 10.1016/0005-2736(67)90017-x. [DOI] [PubMed] [Google Scholar]
  15. Mager J., Dvilansky A., Razin A., Wind E., Izak G. Turnover of purine nucleotides in human red blood cells. Isr J Med Sci. 1966 May-Jun;2(3):297–301. [PubMed] [Google Scholar]
  16. Mansell M. A., Allsop J., North M. E., Simmonds R. J., Harkness R. A., Watts R. W. Effect of renal failure on erythrocyte purine nucleotide, nucleoside and base concentrations and some related enzyme activities. Clin Sci (Lond) 1981 Dec;61(6):757–764. doi: 10.1042/cs0610757. [DOI] [PubMed] [Google Scholar]
  17. McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17;312(3):159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
  18. Minakami S., Yoshikawa H. Studies on erythrocyte glycolysis. 3. The effects of active cation transport, pH and inorganic phosphate concentration on erythrocyte glycolysis. J Biochem. 1966 Feb;59(2):145–150. doi: 10.1093/oxfordjournals.jbchem.a128275. [DOI] [PubMed] [Google Scholar]
  19. Passow H. Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. Rev Physiol Biochem Pharmacol. 1986;103:61–203. doi: 10.1007/3540153330_2. [DOI] [PubMed] [Google Scholar]
  20. Radda G. K., Bore P. J., Rajagopalan B. Clinical aspects on 31P NMR spectroscopy. Br Med Bull. 1984 Apr;40(2):155–159. doi: 10.1093/oxfordjournals.bmb.a071962. [DOI] [PubMed] [Google Scholar]
  21. Ross B. D., Radda G. K., Gadian D. G., Rocker G., Esiri M., Falconer-Smith J. Examination of a case of suspected McArdle's syndrome by 31P nuclear magnetic resonance. N Engl J Med. 1981 May 28;304(22):1338–1342. doi: 10.1056/NEJM198105283042206. [DOI] [PubMed] [Google Scholar]
  22. Salerno C., Gerber G., Giacomello A. Regulatory aspects of hypoxanthine uptake by human erythrocytes. Adv Exp Med Biol. 1986;195(Pt B):75–77. doi: 10.1007/978-1-4684-1248-2_12. [DOI] [PubMed] [Google Scholar]
  23. Saugstad O. D. Hypoxanthine as a measurement of hypoxia. Pediatr Res. 1975 Apr;9(4):158–161. doi: 10.1203/00006450-197504000-00002. [DOI] [PubMed] [Google Scholar]
  24. Schraufstätter I., Born G. V. Dependence of purine loss from human erythrocytes on external pH. Br J Haematol. 1981 Nov;49(3):349–354. doi: 10.1111/j.1365-2141.1981.tb07236.x. [DOI] [PubMed] [Google Scholar]
  25. Steyn L. M., Harley E. H. Substrate inhibition in a human variant of hypoxanthine-guanine phosphoribosyltransferase. J Biol Chem. 1984 Jan 10;259(1):338–342. [PubMed] [Google Scholar]
  26. Wohlhueter R. M., Marz R., Graff J. C., Plagemann P. G. A rapid-mixing technique to measure transport in suspended animal cells: applications to nucleoside transport in Novikoff rat hepatoma cells. Methods Cell Biol. 1978;20:211–236. doi: 10.1016/s0091-679x(08)62020-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES