Abstract
We studied the role of diminished sympathetic nervous system (SNS) activity and endogenous opiate activation in the hypotensive action of taurine, a sulfur amino acid, in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Supplementation of taurine could prevent the development of DOCA-salt hypertension in rats, but failed to change blood pressure in vehicle-treated control rats. Cardiac NE turnover, which was determined from the rate of decline of tissue NE concentration after the administration of alpha-methyl-p-tyrosine, was markedly accelerated in DOCA-salt rats, but 1% taurine supplement restored it to normal. Moreover, naloxone (2 mg/kg), the specific opiate antagonist, increased blood pressure in taurine-treated DOCA-salt rats, restoring it to levels similar to those in the DOCA-salt rats. In contrast, taurine did not decrease cardiac NE turnover in the control rats, nor did naloxone increase blood pressure in the taurine-treated control rats. Moreover, supplementation of taurine increased both beta-endorphin-like immunoreactive material and taurine contents in the hypothalamus of DOCA-salt rats, whereas it did not increase beta-endorphin in that of control rats despite increased taurine contents. Thus, taurine not only normalized the increased cardiac SNS activity but also elicited an opiate-mediated vasodepressor response only in DOCA-salt rats. It is suggested, therefore, that endogenous opiate activation, which is intimately related to SNS suppression, may contribute to the antihypertensive effect of taurine in sodium chloride hypertension.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brodie B. B., Costa E., Dlabac A., Neff N. H., Smookler H. H. Application of steady state kinetics to the estimation of synthesis rate and turnover time of tissue catecholamines. J Pharmacol Exp Ther. 1966 Dec;154(3):493–498. [PubMed] [Google Scholar]
- Cardenas H. L., Ross D. H. Calcium depletion of synaptosomes after morphine treatment. Br J Pharmacol. 1976 Aug;57(4):521–526. doi: 10.1111/j.1476-5381.1976.tb10379.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Einhorn D., Young J. B., Landberg L. Hypotensive effect of fasting: possible involvement of the sympathetic nervous system and endogenous opiates. Science. 1982 Aug 20;217(4561):727–729. doi: 10.1126/science.7100917. [DOI] [PubMed] [Google Scholar]
- Faden A. I., Feuerstein G. Hypothalamic regulation of the cardiovascular and respiratory systems: role of specific opiate receptors. Br J Pharmacol. 1983 Aug;79(4):997–1002. doi: 10.1111/j.1476-5381.1983.tb10547.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faden A. I., Holaday J. W. Opiate antagonists: a role in the treatment of hypovolemic shock. Science. 1979 Jul 20;205(4403):317–318. doi: 10.1126/science.451606. [DOI] [PubMed] [Google Scholar]
- Farsang C., Kapocsi J., Juhasz I., Kunos G. Possible involvement of an endogenous opioid in the antihypertensive effect of clonidine in patients with essential hypertension. Circulation. 1982 Dec;66(6):1268–1272. doi: 10.1161/01.cir.66.6.1268. [DOI] [PubMed] [Google Scholar]
- Farsang C., Ramirez-Gonzalez M. D., Mucci L., Kunos G. Possible role of an endogenous opiate in the cardiovascular effects of central alpha adrenoceptor stimulation in spontaneously hypertensive rats. J Pharmacol Exp Ther. 1980 Jul;214(1):203–208. [PubMed] [Google Scholar]
- Feuerstein G., Faden A. I. Differential cardiovascular effects of mu, delta and kappa opiate agonists at discrete hypothalamic sites in the anesthetized rat. Life Sci. 1982 Nov 15;31(20-21):2197–2200. doi: 10.1016/0024-3205(82)90117-5. [DOI] [PubMed] [Google Scholar]
- Fujita T., Ando K. Hemodynamic and endocrine changes associated with potassium supplementation in sodium-loaded hypertensives. Hypertension. 1984 Mar-Apr;6(2 Pt 1):184–192. [PubMed] [Google Scholar]
- Fujita T., Henry W. L., Bartter F. C., Lake C. R., Delea C. S. Factors influencing blood pressure in salt-sensitive patients with hypertension. Am J Med. 1980 Sep;69(3):334–344. doi: 10.1016/0002-9343(80)90002-9. [DOI] [PubMed] [Google Scholar]
- Fujita T., Noda H., Ando K. Sodium susceptibility and potassium effects in young patients with borderline hypertension. Circulation. 1984 Mar;69(3):468–476. doi: 10.1161/01.cir.69.3.468. [DOI] [PubMed] [Google Scholar]
- Fujita T., Sato Y., Ando K. Changes in cardiac and hypothalamic noradrenergic activity with taurine in DOCA-salt rats. Am J Physiol. 1986 Nov;251(5 Pt 2):H926–H933. doi: 10.1152/ajpheart.1986.251.5.H926. [DOI] [PubMed] [Google Scholar]
- Fujita T., Sato Y. Changes in blood pressure and extracellular fluid with taurine in DOCA-salt rats. Am J Physiol. 1986 Jun;250(6 Pt 2):R1014–R1020. doi: 10.1152/ajpregu.1986.250.6.R1014. [DOI] [PubMed] [Google Scholar]
- Glowinski J., Iversen L. L. Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem. 1966 Aug;13(8):655–669. doi: 10.1111/j.1471-4159.1966.tb09873.x. [DOI] [PubMed] [Google Scholar]
- Guerrero-Munoz F., de Lourdes Guerrero M., Way E. L., Li C. H. Effect of beta-endorphin on calcium uptake in the brain. Science. 1979 Oct 5;206(4414):89–91. doi: 10.1126/science.39340. [DOI] [PubMed] [Google Scholar]
- Harris R. A., Yamamoto H., Loh H. H., Way E. L. Discrete changes in brain calcium with morphine analgesia, tolerance-dependence, and abstinence. Life Sci. 1977 Feb 1;20(3):501–505. doi: 10.1016/0024-3205(77)90393-9. [DOI] [PubMed] [Google Scholar]
- Holaday J. W., Faden A. I. Naloxone reversal of endotoxin hypotension suggests role of endorphins in shock. Nature. 1978 Oct 5;275(5679):450–451. doi: 10.1038/275450a0. [DOI] [PubMed] [Google Scholar]
- Horan M. J., Blaustein M. P., Dunbar J. B., Grundy S., Kachadorian W., Kaplan N. M., Kotchen T. A., Simopoulos A. P., Van Itallie T. B. NIH report on research challenges in nutrition and hypertension. Hypertension. 1985 Sep-Oct;7(5):818–823. doi: 10.1161/01.hyp.7.5.818. [DOI] [PubMed] [Google Scholar]
- Huxtable R. J., Chubb J., Azari J. Physiological and experimental regulation of taurine content in the heart. Fed Proc. 1980 Jul;39(9):2685–2690. [PubMed] [Google Scholar]
- Izumi K., Munekata E., Barbeau A., Nakanishi T., Yoshida M., Yamamoto H., Fukuda T. Effects of taurine on tolerance to [D-Ala2, Met5]enkephalinamide in rats. Eur J Pharmacol. 1982 Aug 13;82(1-2):55–63. doi: 10.1016/0014-2999(82)90552-0. [DOI] [PubMed] [Google Scholar]
- Izumi K., Munekata E., Yamamoto H., Nakanishi T., Barbeau A. Effects of taurine and gamma-aminobutyric acid on akinesia and analgesia induced by D-Ala2-Met-enkephalinamide in rats. Peptides. 1980 Summer;1(2):139–146. doi: 10.1016/0196-9781(80)90078-9. [DOI] [PubMed] [Google Scholar]
- Janssen H. F., Lutherer L. O. Ventriculocisternal administration of naloxone protects against severe hypotension during endotoxin shock. Brain Res. 1980 Aug 4;194(2):608–612. doi: 10.1016/0006-8993(80)91251-2. [DOI] [PubMed] [Google Scholar]
- Kunos G., Farsang C., Ramirez-Gonzales M. D. beta-Endorphin: possible involvement in the antihypertensive effect of central alpha-receptor activation. Science. 1981 Jan 2;211(4477):82–84. doi: 10.1126/science.6108611. [DOI] [PubMed] [Google Scholar]
- Kuriyama K. Taurine as a neuromodulator. Fed Proc. 1980 Jul;39(9):2680–2684. [PubMed] [Google Scholar]
- Kuriyama K., Yoneda Y. Morphine induced alterations of gamma-aminobutyric acid and taurine contents and L-glutamate decarboxylase activity in rat spinal cord and thalamus: possible correlates with analgesic action of morphine. Brain Res. 1978 Jun 9;148(1):163–179. doi: 10.1016/0006-8993(78)90386-4. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Matsumura M., Yamanoi A., Yamamoto S., Saito S. In vivo and in vitro effects of substance P on the release of beta-endorphin-like immunoreactivity. Neuroendocrinology. 1982;35(3):163–168. doi: 10.1159/000123375. [DOI] [PubMed] [Google Scholar]
- McCarron D. A., Morris C. D., Cole C. Dietary calcium in human hypertension. Science. 1982 Jul 16;217(4556):267–269. doi: 10.1126/science.7089566. [DOI] [PubMed] [Google Scholar]
- Muramatsu M., Kakita K., Nakagawa K., Kuriyama K. A modulating role of taurine on release of acetylcholine and norepinephrine from neuronal tissues. Jpn J Pharmacol. 1978 Apr;28(2):259–268. doi: 10.1254/jjp.28.259. [DOI] [PubMed] [Google Scholar]
- Petty M. A., De Jong W. Cardiovascular effects of beta-endorphin after microinjection into the nucleus tractus solitarii of the anaesthetised rat. Eur J Pharmacol. 1982 Jul 16;81(3):449–457. doi: 10.1016/0014-2999(82)90110-8. [DOI] [PubMed] [Google Scholar]
- Rossier J., Vargo T. M., Minick S., Ling N., Bloom F. E., Guillemin R. Regional dissociation of beta-endorphin and enkephalin contents in rat brain and pituitary. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5162–5165. doi: 10.1073/pnas.74.11.5162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHAW R. K., HEINE J. D. NINHYDRIN POSITIVE SUBSTANCES PRESENT IN DIFFERENT AREAS OF NORMAL RAT BRAIN. J Neurochem. 1965 Mar;12:151–155. doi: 10.1111/j.1471-4159.1965.tb06751.x. [DOI] [PubMed] [Google Scholar]
- Sato Y., Ando K., Fujita T. Role of sympathetic nervous system in hypotensive action of taurine in DOCA-salt rats. Hypertension. 1987 Jan;9(1):81–87. doi: 10.1161/01.hyp.9.1.81. [DOI] [PubMed] [Google Scholar]
- Schurr A., Tseng M. T., West C. A., Rigor B. M. Taurine improves the recovery of neuronal function following cerebral hypoxia: an in vitro study. Life Sci. 1987 May 25;40(21):2059–2066. doi: 10.1016/0024-3205(87)90098-1. [DOI] [PubMed] [Google Scholar]
- Sitsen J. M., Van Ree J. M., De Jong W. Cardiovascular and respiratory effects of beta-endorphin in anesthetized and conscious rats. J Cardiovasc Pharmacol. 1982 Nov-Dec;4(6):883–888. [PubMed] [Google Scholar]
- Sved A. F., Fernstrom J. D., Wurtman R. J. Tyrosine administration reduces blood pressure and enhances brain norepinephrine release in spontaneously hypertensive rats. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3511–3514. doi: 10.1073/pnas.76.7.3511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto H. A., McCain H. W., Misawa S., Way E. L. Effects of amino acids, especially taurine and gamma-aminobutyric acid (GABA), on analgesia and calcium depletion induced by morphine in mice. Eur J Pharmacol. 1981 May 8;71(2-3):177–184. doi: 10.1016/0014-2999(81)90021-2. [DOI] [PubMed] [Google Scholar]
- Yamamoto H., Harris R. A., Loh H. H., Way E. L. Effects of acute and chronic morphine treatments on calcium localization and binding in brain. J Pharmacol Exp Ther. 1978 May;205(2):255–264. [PubMed] [Google Scholar]
- Yamori Y., Horie R., Tanase H., Fujiwara K., Nara Y., Lovenberg W. Possible role of nutritional factors in the incidence of cerebral lesions in stroke-prone spontaneously hypertensive rats. Hypertension. 1984 Jan-Feb;6(1):49–53. doi: 10.1161/01.hyp.6.1.49. [DOI] [PubMed] [Google Scholar]
- Zelis R., Mansour E. J., Capone R. J., Mason D. T. The cardiovascular effects of morphine. The peripheral capacitance and resistance vessels in human subjects. J Clin Invest. 1974 Dec;54(6):1247–1258. doi: 10.1172/JCI107869. [DOI] [PMC free article] [PubMed] [Google Scholar]