Abstract
We studied the effects of dietary NaCl intake on the renal distal tubule by feeding rats high or low NaCl chow or by chronically infusing furosemide. Furosemide-treated animals were offered saline as drinking fluid to replace urinary losses. Effects of naCl intake were evaluated using free-flow micropuncture, in vivo microperfusion, and morphometric techniques. Dietary NaCl restriction did not affect NaCl delivery to the early distal tubule but markedly increased the capacity of the distal convoluted tubule to transport Na and Cl. Chronic furosemide infusion increased NaCl delivery to the early distal tubule and also increased the rates of Na and Cl transport above the rates observed in low NaCl diet rats. When compared with high NaCl intake alone, chronic furosemide infusion with saline ingestion increased the fractional volume of distal convoluted tubule cells by nearly 100%, whereas dietary NaCl restriction had no effect. The results are consistent with the hypotheses that (a) chronic NaCl restriction increases the transport ability of the distal convoluted tubule independent of changes in tubule structure, (b) high rates of ion delivery to the distal nephron cause tubule hypertrophy, and (c) tubule hypertrophy is associated with increases in ion transport capacity. They indicate that the distal tubule adapts functionally and structurally to perturbations in dietary Na and Cl intake.
Full text
PDF













Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bouby N., Bankir L., Trinh-Trang-Tan M. M., Minuth W. W., Kriz W. Selective ADH-induced hypertrophy of the medullary thick ascending limb in Brattleboro rats. Kidney Int. 1985 Sep;28(3):456–466. doi: 10.1038/ki.1985.152. [DOI] [PubMed] [Google Scholar]
- Costanzo L. S. Localization of diuretic action in microperfused rat distal tubules: Ca and Na transport. Am J Physiol. 1985 Apr;248(4 Pt 2):F527–F535. doi: 10.1152/ajprenal.1985.248.4.F527. [DOI] [PubMed] [Google Scholar]
- Crayen M. L., Thoenes W. Architecture and cell structures in the distal nephron of the rat kidney. Cytobiologie. 1978 Jun;17(1):197–211. [PubMed] [Google Scholar]
- Diezi J., Nenniger M., Giebisch G. Distal tubular function in superficial rat tubules during volume expansion. Am J Physiol. 1980 Sep;239(3):F228–F232. doi: 10.1152/ajprenal.1980.239.3.F228. [DOI] [PubMed] [Google Scholar]
- Ellison D. H., Velázquez H., Wright F. S. Thiazide-sensitive sodium chloride cotransport in early distal tubule. Am J Physiol. 1987 Sep;253(3 Pt 2):F546–F554. doi: 10.1152/ajprenal.1987.253.3.F546. [DOI] [PubMed] [Google Scholar]
- Fine L. G., Bradley T. Adaptation of proximal tubular structure and function: insights into compensatory renal hypertrophy. Fed Proc. 1985 Aug;44(11):2723–2727. [PubMed] [Google Scholar]
- Galla J. H., Bonduris D. N., Dumbauld S. L., Luke R. G. Segmental chloride and fluid handling during correction of chloride-depletion alkalosis without volume expansion in the rat. J Clin Invest. 1984 Jan;73(1):96–106. doi: 10.1172/JCI111211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galla J. H., Bonduris D. N., Kirk K. A., Luke R. G. Effect of dietary NaCl on chloride uptake in rat collecting duct segment. Am J Physiol. 1986 Sep;251(3 Pt 2):F454–F459. doi: 10.1152/ajprenal.1986.251.3.F454. [DOI] [PubMed] [Google Scholar]
- Galla J. H., Kirchner K. A., Kotchen T. A., Luke R. G. Effect of hypochloremia on loop segment chloride and solute reabsorption in the rat during volume expansion. Kidney Int. 1981 Nov;20(5):569–574. doi: 10.1038/ki.1981.178. [DOI] [PubMed] [Google Scholar]
- Good D. W., Wright F. S. Luminal influences on potassium secretion: sodium concentration and fluid flow rate. Am J Physiol. 1979 Feb;236(2):F192–F205. doi: 10.1152/ajprenal.1979.236.2.F192. [DOI] [PubMed] [Google Scholar]
- Kaissling B., Bachmann S., Kriz W. Structural adaptation of the distal convoluted tubule to prolonged furosemide treatment. Am J Physiol. 1985 Mar;248(3 Pt 2):F374–F381. doi: 10.1152/ajprenal.1985.248.3.F374. [DOI] [PubMed] [Google Scholar]
- Kaissling B., Kriz W. Structural analysis of the rabbit kidney. Adv Anat Embryol Cell Biol. 1979;56:1–123. doi: 10.1007/978-3-642-67147-0. [DOI] [PubMed] [Google Scholar]
- Kaissling B., Le Hir M. Distal tubular segments of the rabbit kidney after adaptation to altered Na- and K-intake. I. Structural changes. Cell Tissue Res. 1982;224(3):469–492. doi: 10.1007/BF00213746. [DOI] [PubMed] [Google Scholar]
- Kaissling B. Structural adaptation to altered electrolyte metabolism by cortical distal segments. Fed Proc. 1985 Aug;44(11):2710–2716. [PubMed] [Google Scholar]
- Kaissling B. Structural aspects of adaptive changes in renal electrolyte excretion. Am J Physiol. 1982 Sep;243(3):F211–F226. doi: 10.1152/ajprenal.1982.243.3.F211. [DOI] [PubMed] [Google Scholar]
- Khuri R. N., Strieder N., Wiederholt M., Giebisch G. Effects of graded solute diuresis on renal tubular sodium transport in the rat. Am J Physiol. 1975 Apr;228(4):1262–1268. doi: 10.1152/ajplegacy.1975.228.4.1262. [DOI] [PubMed] [Google Scholar]
- Kriz W., Bankir L. ADH-induced changes in the epithelium of the thick ascending limb in Brattleboro rats with hereditary hypothalamic diabetes insipidus. Ann N Y Acad Sci. 1982;394:424–434. doi: 10.1111/j.1749-6632.1982.tb37454.x. [DOI] [PubMed] [Google Scholar]
- Le Hir M., Kaissling B., Dubach U. C. Distal tubular segments of the rabbit kidney after adaptation to altered Na- and K-intake. II. Changes in Na-K-ATPase activity. Cell Tissue Res. 1982;224(3):493–504. doi: 10.1007/BF00213747. [DOI] [PubMed] [Google Scholar]
- Loud A. V., Anversa P. Morphometric analysis of biologic processes. Lab Invest. 1984 Mar;50(3):250–261. [PubMed] [Google Scholar]
- Malnic G., Klose R. M., Giebisch G. Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am J Physiol. 1966 Sep;211(3):529–547. doi: 10.1152/ajplegacy.1966.211.3.529. [DOI] [PubMed] [Google Scholar]
- Oster J. R., Epstein M., Smoller S. Combined therapy with thiazide-type and loop diuretic agents for resistant sodium retention. Ann Intern Med. 1983 Sep;99(3):405–406. doi: 10.7326/0003-4819-99-3-405. [DOI] [PubMed] [Google Scholar]
- Peterson L. N., Wright F. S. Effect of sodium intake on renal potassium excretion. Am J Physiol. 1977 Sep;233(3):F225–F234. doi: 10.1152/ajprenal.1977.233.3.F225. [DOI] [PubMed] [Google Scholar]
- Stanton B. A., Biemesderfer D., Wade J. B., Giebisch G. Structural and functional study of the rat distal nephron: effects of potassium adaptation and depletion. Kidney Int. 1981 Jan;19(1):36–48. doi: 10.1038/ki.1981.5. [DOI] [PubMed] [Google Scholar]
- Stein J. H., Osgood R. W., Boonjarern S., Cox J. W., Ferris T. F. Segmental sodium reabsorption in rats with mild and severe volume depletion. Am J Physiol. 1974 Aug;227(2):351–359. doi: 10.1152/ajplegacy.1974.227.2.351. [DOI] [PubMed] [Google Scholar]
- Velázquez H., Good D. W., Wright F. S. Mutual dependence of sodium and chloride absorption by renal distal tubule. Am J Physiol. 1984 Dec;247(6 Pt 2):F904–F911. doi: 10.1152/ajprenal.1984.247.6.F904. [DOI] [PubMed] [Google Scholar]
- Velázquez H., Wright F. S. Effects of diuretic drugs on Na, Cl, and K transport by rat renal distal tubule. Am J Physiol. 1986 Jun;250(6 Pt 2):F1013–F1023. doi: 10.1152/ajprenal.1986.250.6.F1013. [DOI] [PubMed] [Google Scholar]
- Velázquez H., Wright F. S., Good D. W. Luminal influences on potassium secretion: chloride replacement with sulfate. Am J Physiol. 1982 Jan;242(1):F46–F55. doi: 10.1152/ajprenal.1982.242.1.F46. [DOI] [PubMed] [Google Scholar]
- Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
- Wollam G. L., Tarazi R. C., Bravo E. L., Dustan H. P. Diuretic potency of combined hydrochlorothiazide and furosemide therapy in patients with azotemia. Am J Med. 1982 Jun;72(6):929–938. doi: 10.1016/0002-9343(82)90854-3. [DOI] [PubMed] [Google Scholar]
- Woodhall P. B., Tisher C. C. Response of the distal tubule and cortical collecting duct to vasopressin in the rat. J Clin Invest. 1973 Dec;52(12):3095–3108. doi: 10.1172/JCI107509. [DOI] [PMC free article] [PubMed] [Google Scholar]










